Browse > Article
http://dx.doi.org/10.13160/ricns.2019.12.2.47

Fabrication of Antimicrobial Wound Dressings Using Silver-Citrate Nanorods and Analysis of Their Wound-Healing Efficacy  

Park, Yong Jin (Department of Medicine, College of Medicine, Chosun University)
Jeong, Jisu (Department of Chemistry, College of Natural Science, Chosun University)
Kim, Jae Seok (Department of Chemistry, College of Natural Science, Chosun University)
Choi, Dong Soo (Post-Harvest Engineering Division, National Institute of Agricultural Sciences)
Cho, Goang-Won (Department of Biology, College of Natural Science, Chosun University)
Park, Jin Seong (Department of Materials Engineering, College of Engineering, Chosun University)
Lim, Jong Kuk (Department of Chemistry, College of Natural Science, Chosun University)
Publication Information
Journal of Integrative Natural Science / v.12, no.2, 2019 , pp. 47-57 More about this Journal
Abstract
Staphylococcus epidermidis is well-known not only as an innocuous normal flora species commonly isolated from human skin, but also as an important bacterial species to keep skin healthy, because this species can protect the human skin from pathogenic microorganisms. However, S. epidermidis turns into a potential pathogen in damaged skin, because these bacteria can easily form a biofilm on the wound area and provide antimicrobial resistance to other microorganisms embedded in the biofilm. Thus, it is important to kill S. epidermidis in the early stage of wound treatment and block the formation of biofilms in advance. In the present study, hydrogel wound dressings were fabricated using polyvinyl alcohol/polyethylene glycol containing silver citrate nanorods, which have been proven to have strong antimicrobial activity, especially against S. epidermidis, and their wound-healing efficacy was investigated in vivo using a rat experiment.
Keywords
Antimicrobial Activity; Burn; Hydrogel; Silver Citrate Nanorod; Staphylococcus epidermidis; Wound Dressing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zhang, M. Wu, A. Sen, N. Cioffi(eds.), M. Rai (eds.), Nano-Antimicrobials: Progress and Prospects, Springer, Berlin, 2012. pp. 3.
2 A. D. Russell, W. B. Hugo, G. P. Ellis (eds.), D. K. Luscombe (eds.), Progress in Medicinal Chemistry, Elsevier Science, New York, 1994. pp. 351-370.
3 K. A. Strohfeldt, Essentials of Inorganic Chemistry, Wiley, New Jersey. 2014.
4 J. W. Alexander, "History of the Medical Use of Silver", Surg. Infect., Vol. 10, p. 289, 2009.   DOI
5 H. J. Klasen, "A Historical Review of the Use of Silver in the Treatment of Burns. II. Renewed Interest for Silver", Burns, Vol. 26, p. 131, 2000.   DOI
6 R. J. White, R. Cooper, "Silver sulphadiazine: A Review of the Evidence", Wounds UK, Vol. 1. p. 51, 2005.
7 Z. M. Xiu, J. Ma, P. J. J. Alvarez, "Differential Effect of Common Ligands and Molecular Oxygen on Antimicrobial Activity of Silver Nanoparticles versus Silver Ions", Environ. Sci. Technol., Vol. 45, p. 9003, 2011.   DOI
8 G. A. Sotiriou, S. E. Pratsinis, "Antibacterial Activity of Nanosilver Ions and Particles", Environ. Sci. Technol., Vol. 44, p. 5649, 2010.   DOI
9 C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, "Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles", J. Proteome. Res., Vol. 5, p. 916, 2006.   DOI
10 G. Lopez-Carballo, L. Higueras, R. Gavara, P. Hernandez-Munoz, "Silver Ions Release from Antibacterial Chitosan Films Containing in situ Generated Silver Nanoparticles", J. Agric. Food Chem., Vol. 61, p. 260, 2013.   DOI
11 Z. M. Xiu, Q. B. Zhang, H. L. Puppala, V. L. Colvin, P. J. J. Alvarez, "Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles", Nano Lett., Vol. 12, p. 4271, 2012.   DOI
12 S. Djokic, "Synthesis and Antimicrobial Activity of Silver Citrate Complexes", Bioinorg. Chem. Appl., Vol. 2008, Article ID 436458, 2008.
13 H. Kong, J. Jang, "Antibacterial Properties of Novel Poly(methyl methacrylate) Nanofiber Containing Silver Nanoparticles", Langmuir, Vol. 24, p. 2051, 2008.   DOI
14 I. Sondi, B. Salopek-Sondi, "Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-negative Bacteria", J. Colloid. Interface Sci., Vol. 275, p. 177, 2004.   DOI
15 Jr. C. L. Fox, S. M. Modak, "Mechanism of Silver Sulfadiazine action on Burn Wound Infections", Antimicrob. Agents Chemother., Vol. 5, p. 582, 1974.   DOI
16 B. Ajitha, Y. A. K. Reddy, P. S. Reddy, "Enhanced Antimicrobial Activity of Silver Nanoparticles with Controlled Particle Size by pH Variation", Powder Technol., Vol. 269, p. 110, 2015.   DOI
17 H. Arakawa, J. F. Neault, H. A. Tajmir-Riahi, "Silver(I) Complexes with DNA and RNA Studied by Fourier Transform Infrared Spectroscopy and Capillary Electrophoresis", Biophys. J., Vol. 81, p. 1580, 2001.   DOI
18 Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, "A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus", J. Biomed. Mater. Res., Vol. 52, p. 662, 2000.   DOI
19 J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, M. J. Yacaman, "The Bactericidal Effect of Silver Nanoparticles", Nanotechnology, Vol. 16, p. 2346, 2005.   DOI
20 S. Pal, Y. K. Tak, J. M. Song, "Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-negative Bacterium Escherichia coli", Appl. Environ. Microbiol., Vol. 73, p. 1712, 2007.   DOI
21 H. J. Jang, H. Yun, S. W. Oh, B. G. Jung, C. W. Lee, J. K. Lim, "Asymmetric Growth of Silver Citrate Compounds by Mechanical Stirring and Their Enhanced Antimicrobial Activity", Bull. Korean Chem. Soc., Vol.38, p. 1069, 2017.   DOI
22 S. L. Percival, S. M. McCarty, B. Lipsky, "Biofilms and Wounds: An Overview of the Evidence", Adv. Wound Care, Vol. 4, p. 373, 2015.   DOI
23 M.Otto, "Molecular Basis of Staphylococcus epidermidis Infections", Semin. Immunopathol., Vol. 34, p. 201, 2012.   DOI
24 V. Kostenko, J. Lyczak, K. Turner, R. J. Martinuzzi, "Impact of Silver-Containing Wound Dressings on Bacterial Biofilm Viability and Susceptibility to Antibiotics During Prolonged Treatment", Antimicrob. Agents Chemother., Vol. 54, p. 5120, 2010.   DOI
25 J. P. O'Gara, H. Humphreys, "Staphylococcus Epidermidis Biofilms: Importance and Implications", J. Med. Microbiol., Vol. 50, p. 582, 2001.   DOI
26 E. O. Akinkunmi, O. I. Adeyemi, O. A. Igbeneghu, E. O. Olaniyan, A. E. Omonisi, A. Lamikanra, "The Pathogenicity of Staphylococcus Epidermidis on the Intestinal Organs of Rats and Mice:An Experimental Investigation", BMC Gastroenterol., Vol. 14, p. 126, 2014.   DOI
27 D. Mack, P. Becker, I. Chatterjee, S. Dobinsky, J. K. M. Knobloch, G. Peters, H. Rohde, M. Herrmann, "Mechanisms of Biofilm Formation in Staphylococcus Epidermidis and Staphylococcus Aureus: Functional Molecules, Regulatory Circuits, and Adaptive Responses", Int. J. Med. Microbiol., Vol. 294, p. 203, 2004.   DOI
28 W. A. Sarhan, H. M. E. Azzazy, I. M. El-Sherbiny, "Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity", Adv. Mater. Interf., Vol. 8, p. 6379, 2016.   DOI
29 V. T. Tchemtchoua, G. Atanasova, A. Aqil, P. Filee, N. Garbacki, O. Vanhooteghem, C. Deroanne, A. Noel, C. Jerome, B. Nusgens, Y. Poumay, A. Colige, "Development of a Chitosan Nanofibrillar Scaffold for Skin Repair and Regeneration", Biomacromolecules, Vol. 12, p. 3194, 2011.   DOI
30 A. Fahmy, E. A. Kamoun, R. El-Eisawy, E. M. El-Fakharany, T. H. Taha, B. K. El-Damhougy, F. Abdelhai, "Poly(vinyl alcohol)-Hyaluronic Acid Membranes for Wound Dressing Applications: Synthesis and in vitro Bio-Evaluations", J. Braz. Chem. Soc., Vol. 26, p. 1466, 2015.
31 R. Jamie, L. Angelo, K. Allison, L. A. Brandon, E. K. Aimee, D. N. Joshua, A. J. J. Friedman, "Silver Sulfadiazine Retards Wound Healing in Mice via Alterations in Cytokine Expression", Investig. Dermatol., Vol. 135, p. 1459, 2015.   DOI