
ABSTRACT
Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments 
of titanium implants on bacterial biofilm formation, correlating surface modifications with 
the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria 
isolated from saliva.
Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic 
force microscopy (AFM) was used to determine the degree to which surface roughness was 
modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-
isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis.
Results: AFM showed that the surface roughness increased after using the air-polishing 
device and ultrasonic scaler, while a significant reduction was observed after using a curette 
or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a 
significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces.
Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ 
abrasive paste could be considered as the prophylactic procedure of choice for managing 
peri-implant lesions and for therapy-resistant cases of periodontitis.
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INTRODUCTION

Implant-related infections are among the most important causes of dental implant failure. 
Although estimates of prevalence are quite variable due to inconsistent disease definitions 
[1], in a systematic review and meta-analysis, Derks and Tomasi [2] reported a weighted 
mean prevalence of peri-implant mucositis and peri-implantitis of 43% (95% confidence 
interval [CI], 32%–54%) and 22% (95% CI, 14%–30%), respectively.

As established at the sixth European Workshop on Periodontology (in 2008), peri-implant 
diseases are defined as “inflammatory reactions in the tissues surrounding the implants” and 
are frequently linked with the presence of a bacterial biofilm, leading in some cases to the 
loss of supporting bone, maxillary sinusitis, mandibular fracture, or the infection of other 
implants or natural teeth [3,4].
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In general, the oral cavity, including the teeth, gingival sulcus, attached gingiva, tongue, 
cheek, lip, hard palate, and soft palate, with around 1,000 species [5], hosts the second 
most complex microbiota in the body after the colon. The presence and diversity of the oral 
microbiota are frequently associated with systemic diseases (e.g., diabetes, respiratory and 
cardiovascular disease, and osteoporosis) [6] and particularly with dental caries, periodontitis, 
and peri-implant diseases [7,8]. In a healthy patient who has received an implant, homeostasis 
exists between the peri-implant tissues and the microbial communities that have colonized 
the device. In the presence of inflammation, this delicate equilibrium can be disrupted in 
favor of proliferation and persistence of inflammation-triggering microbial communities, 
which may lead to the progression of peri-implantitis [9,10]. In such cases, several species of 
bacteria develop an adherent layer of plaque (referred to as a biofilm) on the implant surface, 
which protects the organized bacteria from both fluid shear stress and the action of systemic 
pharmacological therapies [11,12]. Biofilm formation involves a sequence of events starting 
with reversible adhesion of bacteria to a solid surface (tooth or dental implant), mainly due to 
electrostatic or Van der Waals forces established between bacteria and the material surface. 
The second stage consists of bacterial accumulation and irreversible attachment mediated by 
bacterial adhesion proteins and extracellular matrix formation. Finally, the biofilm matures 
with the detachment of some bacteria for new surface colonization. Implant surface properties 
(i.e., roughness, hydrophilicity, chemical composition, and even the sterilization method) 
can influence the first stage of biofilm formation [13]. It is well known that rough surfaces 
promote bacterial attachment and biofilm formation to a greater extent than smooth surfaces 
via the increased contact area between the material and bacterial cells and the protection 
of bacteria from shear forces [14,15]. Helpful therapeutic programs for the management of 
peri-implant diseases consist of non-surgical therapies, including prolonged antibiotic (which 
can last for years), antiseptic, and laser treatments, as well as regular oral hygiene of teeth 
and implants and periodic removal of microbial deposits from the implants. However, these 
treatments have shown non-predictable results and can ultimately lead to removal of the 
device, with a consequent increase in hospitalization time and cost, as well as a greater burden 
of patient compliance [16,17].

For this reason, the procedure of choice to avoid biofilm formation is the mechanical and/or 
ultrasonic debridement of titanium implant surfaces using air-abrasive devices, with or without 
the adjunctive use of chemical agents (i.e., irrigation with local disinfectants, and local or 
systemic antibiotic therapy) [18-20]. These treatments produce microscopically visible surface 
alterations dependent on the nature, particle size, and composition of the powder.

In the present study, we investigated the effects of 4 different prophylactic titanium implant 
treatments on bacterial biofilm formation, correlating surface texture modifications with 
the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria 
isolated from saliva. The 2 commercially-available bacterial strains that were analyzed are 
opportunistic pathogenic bacteria frequently associated with peri-implant disease and 
implant failure [21,22].

P. aeruginosa PAO1 is one of the most important Gram-negative bacteria that cause biofilm-
associated infections, particularly in immunocompromised persons, and is a well-established 
model organism for studying biofilm development. In addition, Canullo et al. [22] identified 
P. aeruginosa PAO1 in patients affected by peri-implant disease at the level of both the peri-
implant sulcus and gingival sulcus of the adjacent teeth and the connection and abutment at 
the inner portion of each implant.
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Furthermore, S. aureus is considered to be a major pathogen associated with medical device-
related infections. Indeed, several studies have demonstrated that S. aureus has a high affinity 
for titanium surfaces and can be found in peri-implant lesions, as well as in therapy-resistant 
cases of periodontitis [23,24].

MATERIALS AND METHODS

Following several previous studies, we determined the sample size, assuming a statistically 
significant difference in optical density (OD; indicator of the adherent viable biomass) or 
log10 colony-forming unit (CFU; an indicator of bacterial colonization) between the treated 
and control group of 0.22, a standard deviation (SD) of 0.18, an α value of 0.05, and a power 
of 0.8 [25-27]. A total of 10 pure titanium disks (5 mm in diameter, Sweden Martina, Due 
Carrare, Italy) for each prophylactic procedure were estimated to be necessary. The following 
treatments were analyzed:

1) Control (no treatments).
2)  Ultrasonic scaler (EMS, Nyon, Switzerland) with a conventional stainless-steel tip. Each 

scaling tip was angled at approximately 45° to the surface at maximum power for 10 
seconds.

3) Stainless-steel Gracey curette (Medesy srl, Maniago, Italy).
4)  Air-polishing device (AIRFLOW Master®, EMS) using glycine-based AIRFLOW® perio 

powder (AIRFLOW® powder perio, EMS). The treatment was performed at a distance 
of 5 mm from the disk surface for 10 seconds using the maximum settings for air and 
water pressure.

5)  Abrasive paste for polishing (Detartrine ZTM; DZ) (Ogna, Muggio, Italy) applied with a 
silicon rubber cup mounted on a handpiece set at 800 rpm for 5 seconds.

After each treatment the titanium surfaces were cleaned with acetone for 1 minute, washed 
with distilled water, and finally air-dried. All experimental procedures were performed by the 
same investigator.

Surface analysis by atomic force microscopy (AFM)
After each prophylactic procedure, the disks were attached to a metal holder using a rapid-
drying cyanoacrylate glue. In accordance with our previous studies [28-31], each sample was 
placed on an AFM (Assing, Rome, Italy), and then 20 areas (5×5 µm), representative of the 
entire disk surface, were randomly selected and analyzed on a 3-mm section at the tip of the 
disk. The AFM images of the file samples were recorded using contact mode under ambient 
conditions. AFM probes (curvature radius <10 nm) mounted on cantilevers (250 µm) with 
a spring constant of 0.1 Nm−1 were used. Three-dimensional images (400×400 lines) were 
processed using Gwyddion software 2.19 (http://www.gwyddion.net). The roughness average 
(Ra) and root mean square (RMS) of the scanned surface profiles were recorded. These 
parameters indicated changes in vertical surface topography, with increasing Ra and RMS 
values indicating alterations of the disk surfaces caused by each treatment.

Biofilm development
In these experiments, P. aeruginosa PAO1 (ATCC® BAA-47™) and S. aureus (ATCC® 25923) 
were used as reference strains. In addition, saliva from 3 volunteers without active caries 
or periodontal disease was used to isolate salivary bacteria. In particular, Streptococcus spp., 
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Bacteroides fragilis, and Staphylococcus epidermidis were identified by biochemical assays (API®/
ID32, bioMérieux, Grassina, Italy) and grown at 37°C in non-selective nutrient broth (NB; 
Oxoid, Basingstoke, Hants, UK). The biofilm was developed, as previously described, on 
sterile (gamma-irradiated) specimens in a 96-well polystyrene plate with some modifications 
[32]. Briefly, an overnight culture of each bacterial strain or inoculum was diluted with 
tryptic soy broth (TSB; BD Bioscience, Milan, Italy) to an OD600 nm of 0.2, and then incubated 
statically at 37°C in a humid atmosphere for 48–72 hours until a mature biofilm was obtained.

CFUs following bacterial colonization
The number of CFUs was determined by plating samples of bacterial growth from the implant 
surface on agar. Plates were incubated at 37°C in a humid atmosphere for 48 hours, and the 
number of colonies was counted.

Semi-quantitative analysis of biofilm using crystal violet staining
The amount of biofilm was determined using crystal violet staining as described by Mandrich 
et al. [32]. At the end of the incubation time, specimens were washed twice with sterile saline 
and air-dried. The adherent bacterial cells were stained with 0.1% crystal violet solution for 30 
minutes. After staining, the excess crystal violet was removed and the specimens were washed 5 
times with 300 μL of sterile distilled water, left to completely air-dry, and finally placed in 6-well 
plates containing 3 mL of 96% ethanol in order to re-solubilize the dye included in the biofilm. 
Crystal violet absorbance was measured at 570 nm using a microplate reader (Cytation 3, ASHI, 
Bernareggio, Italy). Measurements were carried out in triplicate for each disc.

Statistical analysis
Results were expressed as mean±SD. Comparisons between groups were performed using 
1-way analysis of variance followed by the Tukey test for multiple comparisons. P values ≤0.05 
were considered to indicate statistical significance. All data were analyzed with GraphPad 
Prism version 5.01 (GraphPad Inc., La Jolla, CA, USA).

RESULTS

Three-dimensional AFM images of the surfaces of the treated disks and controls showed 
topographic irregularities at the nanometric scale (Figure 1). In particular, all treated disk 
surface images revealed an increase in roughness compared to the controls. To investigate the 
quantitative differences in topography resulting from the prophylactic procedures, vertical 
topographic parameters (Ra and RMS) were evaluated. The Ra and RMS values of disks 
treated with DZ and Gracey steel curettes were significantly lower (P<0.05) than those of 
the control disks (Table 1). In addition, using the ultrasonic scaler tips and the air-polishing 
device with glycine powder induced an increase in the mean Ra and RMS values compared to 
the control samples (Table 1).

Antibiofilm activity
Tables 2 and 3 summarize the mean, SD, sample size, P values, and results of the post hoc 
comparison of antibiofilm activity for all tested implants. A significant (P<0.01) reduction 
in biofilm formation was only found for the DZ-treated implant surfaces. In particular, DZ 
treatment was able to reduce the biofilm formation by about 40% for both P. aeruginosa PAO1 
and S. aureus. A statistically significant reduction of S. aureus biofilm formation was also 
observed for DZ in comparison to the air-polishing device treatment.
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No significant differences were found in bacterial colonization among the treated implant 
surfaces for any of the bacterial strains (Tables 4 and 5).
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0.00 µm

x: 5.0 µmy: 5.0 µm

Figure 1. Representative 3-dimensional atomic force microscopy images of the titanium disk surfaces. 
Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, ultrasonic 
scaler: ultrasonic scaler EMS with a conventional stainless-steel tip, curette: stainless-steel Gracey curette, air-
polishing device: AIRFLOW® with glycine powder.

Table 1. Mean±standard deviation of Ra and RMS values in the experimental groups (n=10)
Variablesa) Ra (nm) RMS (nm)
Control 134.2±8.0 166.7±9.8
DZ 86.2±4.1b) 118.2±8.1b)

Ultrasonic scaler 174.3±13.7 199.3±14.9
Curette 82.4±15.7b) 99.2±19.0b)

Air-polishing device 179.7±7.3 214.0±13.9
Ra: roughness average, RMS: root mean square, DZ: Detartrine ZTM.
a)Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, 
ultrasonic scaler: ultrasonic scaler EMS with a conventional stainless-steel tip, curette, stainless-steel Gracey 
curette; air-polishing device, AIRFLOW® with glycine powder; b)P<0.05: indicates statistically significant 
differences between the control and each prophylactic treatment.

Table 2. Antibiofilm activity, evaluated by a crystal violet assay, of treated implants in the presence of Pseudomonas aeruginosa PAO1, Staphylococcus aureus, 
Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis
Variablesa) Pseudomonas aeruginosa 

PAO1
Staphylococcus aureus Bacteroides fragilis Streptococcus spp. Staphylococcus 

epidermidis
OD570 nm 
(mean)

SD No. OD570 nm 
(mean)

SD No. OD570 nm 
(mean)

SD No. OD570 nm 
(mean)

SD No. OD570 nm 
(mean)

SD No.

Control 1.36 0.16 10 1.20 0.11 10 1.20 0.10 10 1.20 0.11 10 1.16 0.13 10
DZ 1.11 0.13 10 0.93 0.04 10 0.94 0.07 10 0.94 0.06 10 0.93 0.07 10
Ultrasonic scaler 1.24 0.17 10 1.02 0.11 10 0.99 0.10 10 1.07 0.10 10 1.05 0.08 10
Curette 1.19 0.15 10 1.00 0.11 10 0.98 0.10 10 1.01 0.09 10 1.03 0.08 10
Air-polishing device 1.21 0.16 10 1.15 0.15 10 1.12 0.09 10 1.10 0.12 10 1.04 0.08 10
OD: optical density, SD: standard deviation, DZ: Detartrine ZTM.
a)Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, ultrasonic scaler: ultrasonic scaler EMS with a 
conventional stainless-steel tip, curette: stainless-steel Gracey curette, air-polishing device: AIRFLOW® with glycine powder.
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Table 3. Results of the statistical analysis and post hoc comparison (Tukey test) between groups of antibiofilm activity
Test detailsa) Pseudomonas aeruginosa 

PAO1
Staphylococcus aureus Bacteroides fragilis Streptococcus spp. Staphylococcus 

epidermidis
Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P

DZ vs. control 0.2502 0.0054 <0.01 0.2687 0.0058 <0.01 0.2649 0.0055 <0.01 0.1853 0.0010 <0.01 0.2286 0.0031 <0.01
Ultrasonic scaler vs. 
control

0.1213 0.3961 NS 0.1827 0.2148 NS 0.2021 0.2254 NS 0.1337 0.0697 NS 0.1084 0.0726 NS

Curette vs. control 0.1717 0.1034 NS 0.1928 0.8026 NS 0.2210 0.0879 NS 0.2573 0.1256 NS 0.1335 0.1154 NS
Air-polishing device 
vs. control

0.1574 0.1598 NS 0.0443 0.8950 NS 0.07935 0.3559 NS 0.09332 0.2257 NS 0.1225 0.2313 NS

DZ vs. ultrasonic 
scaler

−0.1289 0.3354 NS −0.0860 0.4152 NS −0.06278 0.5882 NS −0.1236 0.0524 NS −0.1201 0.5363 NS

DZ vs. curette −0.07847 0.7775 NS −0.0759 0.5400 NS −0.04391 0.8417 NS −0.07208 0.4775 NS −0.09510 0.1476 NS
DZ vs. air-polishing 
device

−0.09282 0.6533 NS −0.1485 0.0322 <0.05 −0.1228 0.0466 <0.05 −0.1640 0.1945 NS −0.1061 0.0830 NS

Ultrasonic scaler vs. 
curette

0.05042 0.9456 NS 0.0601 0.9996 NS 0.01886 0.9919 NS 0.05156 0.7645 NS 0.02504 0.9712 NS

Ultrasonic scaler vs. 
air-polishing device

0.03606 0.9838 NS −0.1384 0.0533 NS −0.017 0.8954 NS −0.04038 0.8871 NS 0.01409 0.9967 NS

Curette vs. air-
polishing device

−0.01436 0.9995 NS 0.0101 0.0546 NS −0.1416 0.0650 NS −0.09194 0.2387 NS −0.01095 0.9988 NS

DZ: Detartrine ZTM, NS: not significant.
a)Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, ultrasonic scaler: ultrasonic scaler EMS with a 
conventional stainless-steel tip, curette: stainless-steel Gracey curette, air-polishing device: AIRFLOW® with glycine powder.

Table 4. Bacterial colonization on treated and non-treated (control) surfaces after biofilm formation
Variablesa) Pseudomonas aeruginosa 

PAO1
Staphylococcus aureus Bacteroides fragilis Streptococcus spp. Staphylococcus 

epidermidis
log10 CFU 
(mean)

SD No. log10 CFU 
(mean)

SD No. log10 CFU 
(mean)

SD No. log10 CFU 
(mean)

SD No. log10 CFU 
(mean)

SD No.

Control 2.00 0.90 10 1.99 0.98 10 1.98 1.10 10 1.99 0.87 10 2.01 1.02 10
DZ 1.76 0.58 10 1.81 0.95 10 1.79 0.65 10 1.78 0.89 10 1.81 0.89 10
Ultrasonic scaler 1.84 0.85 10 1.87 0.75 10 1.88 0.98 10 1.89 0.92 10 1.89 0.59 10
Curette 1.82 0.67 10 1.83 0.68 10 1.81 0.90 10 1.81 1.00 10 1.81 0.86 10
Air-polishing device 1.84 0.82 10 1.89 0.91 10 1.87 0.87 10 1.86 0.88 10 1.87 0.62 10
CFU: colony-forming unit, SD: standard deviation, DZ: Detartrine ZTM.
a)Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, ultrasonic scaler: ultrasonic scaler EMS with a 
conventional stainless-steel tip, curette: stainless-steel Gracey curette, air-polishing device: AIRFLOW® with glycine powder.

Table 5. Results of post hoc comparison (Tukey test) between groups of bacterial colonization
Test detailsa) Pseudomonas aeruginosa 

PAO1
Staphylococcus aureus Bacteroides fragilis Streptococcus spp. Staphylococcus 

epidermidis
Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P Mean 
diff.

Adjusted 
P value

P

DZ vs. control 0.24 0.9587 NS 0.19 0.9888 NS 0.18 0.9913 NS 0.21 0.9853 NS 0.20 0.9827 NS
Ultrasonic scaler vs. 
control

0.16 0.9914 NS 0.12 0.9977 NS 0.10 0.9991 NS 0.10 0.9990 NS 0.12 0.9971 NS

Curette vs. control 0.18 0.9848 NS 0.16 0.9939 NS 0.17 0.9936 NS 0.19 0.9901 NS 0.20 0.9827 NS
Air-polishing device 
vs. control

0.16 0.9914 NS 0.099 0.9990 NS 0.11 0.9987 NS 0.13 0.9975 NS 0.14 0.9952 NS

DZ vs. ultrasonic 
scaler

−0.082 0.9993 NS −0.063 0.9998 NS −0.082 0.9996 NS −0.11 0.9989 NS −0.073 0.9996 NS

DZ vs. curette −0.057 0.9998 NS −0.027 >0.9999 NS −0.014 >0.9999 NS −0.021 >0.9999 NS 0.0 >0.9999 NS
DZ vs. air-polishing 
device

−0.082 0.9993 NS −0.086 0.9994 NS −0.070 0.9998 NS −0.078 0.9997 NS −0.056 0.9999 NS

Ultrasonic scaler vs. 
curette

0.025 >0.9999 NS 0.036 >0.9999 NS 0.068 0.9998 NS 0.086 0.9995 NS 0.073 0.9996 NS

Ultrasonic scaler vs. 
air-polishing device

0.0 >0.9999 NS −0.023 >0.9999 NS 0.012 >0.9999 NS 0.029 >0.9999 NS 0.017 >0.9999 NS

Curette vs. air-
polishing device

−0.025 >0.9999 NS −0.059 0.9999 NS −0.056 >0.9999 NS −0.057 >0.9999 NS −0.056 0.9999 NS

DZ: Detartrine ZTM, NS: not significant.
a)Control: pure titanium disk, DZ: abrasive paste for polishing (Detartrine ZTM) with a silicon rubber cup, ultrasonic scaler: ultrasonic scaler EMS with a 
conventional stainless-steel tip, curette: stainless-steel Gracey curette, air-polishing device: AIRFLOW® with glycine powder.
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DISCUSSION

In this study, we evaluated the effects of mechanical treatments on titanium implants with 
respect to surface roughness and bacterial colonization. Plaque removal from the implant 
surface is a well-established technique for minimizing biofilm formation in order to prevent 
and treat peri-implant diseases [9,24]. Although these treatments are the procedures 
of choice to manage peri-implant diseases, the use of instrumentation may damage the 
stable protective layer of titanium oxide on the implant surface. This layer, which is a few 
nanometers thick, minimizes ion release from the implant to the surrounding tissues, 
thereby reducing inflammatory reactions in the body [33], and is responsible for antibacterial 
activity [34]. Therefore, any modification in the titanium oxide layer may induce implant 
surface corrosion, impairing cell adhesion and reducing implant biocompatibility [35].

Various modalities and instruments have been reported for the mechanical treatment of 
implant surfaces, but the results remain inconclusive [36]. Indeed, several instruments, 
such as metal curettes and conventional sonic and ultrasonic scalers, have shown to damage 
the implant surface severely. Conversely, non-metal instruments, including Teflon curettes, 
plastic instruments, and air abrasives, have been found to lead to an incomplete removal of 
plaque [37].

As consequence, routine prophylactic procedures causing implant surface irregularities, such 
as grooves and scratches, might increase the potential for plaque accumulation.

In the present study, we used AFM to evaluate the effects of different prophylactic procedures 
on titanium surfaces. Recently, AFM analysis was introduced to provide qualitative and 
quantitative information on the topography of various dental materials [29,30].

AFM reconstructs a 3-dimensional image of the surface topography in real time. These data 
sets can be analyzed with dedicated digital software to obtain all the relevant data pertaining 
to the examined surface in a quantitative form. Of additional significance, AFM allows 
topographic contrasts to be visualized in greater detail, enables direct measurements in all 3 
dimensions with a vertical resolution of 0.1 nm (up to), and provides views of surface features 
in a broad range of conditions.

Two basic amplitude parameters were used in this study to characterize the implant surface 
roughness: Ra and RMS. These parameters were recorded for all scanned surface profiles. 
These parameters indicated changes in vertical surface topography, and an increase in Ra 
and RMS values meant alterations in the titanium instruments' surface. Implant surface 
roughness is closely correlated with the amount of adhering bacteria because rough surfaces 
have a greater contact area between the surface and bacterial cells and provide protection 
from shear forces [15]. Several studies reported that a Ra of 0.2 μm can be considered the 
threshold for obtaining a reduction of bacterial adhesion [38].

In our study, the roughness values increased in disks treated using the air-polishing device 
and ultrasonic scaler compared with the control group, whereas a significant reduction in the 
Ra and RMS values occurred when using a curette or polishing with DZ abrasive paste.

The systematic review of Louropoulou et al. [39] showed that only non-metal instruments 
caused minimal or no damage to both smooth and rough titanium surfaces. Furthermore, 
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several papers reported that the use of abrasive paste, as well as rubber cups, did not induce 
any detrimental alterations of the surface [26].

Conversely, metal instruments resulted in severe roughening of the original smooth surface. 
Moreover, several in vitro and in vivo studies demonstrated that air-polishing treatments 
using glycine powder significantly increased the surface roughness of titanium disc surfaces, 
although they are considered safe and effective for biofilm removal [40].

Our results showed that both the DZ abrasive paste and stainless-steel curette significantly 
reduced the Ra value in comparison to the control, but the inhibition of biofilm formation was 
statistically significant only for DZ. Our results regarding the curette seem to be in conflict with 
other reports [39] indicating that curettes induced major alterations of the implant surface. 
However, considering that metal instruments can smoothen rough surfaces by removing the 
titanium surface coating [39], it can be hypothesized that the resultant destruction of the 
titanium oxide layer would promote bacterial colonization and biofilm formation.

In addition, a statistically significant reduction of S. aureus biofilm was observed for DZ in 
comparison to the air-polishing device, highlighting that this prophylactic procedure could 
be considered as the treatment of choice for the management of peri-implant lesions, as 
well as for therapy-resistant cases of periodontitis. Moreover, although we reported some 
differences in the CFU measurements between the instruments, no statistically significant 
reduction was observed, demonstrating the absence of any attachment affinity for a specific 
instrumented implant surface.

In conclusion, this study demonstrated that prophylactic procedures altered the roughness 
of titanium disks, influencing their antibiofilm properties, and DZ abrasive paste was found 
to be the treatment of choice for the management of peri-implant lesions, as well as for 
therapy-resistant cases of periodontitis. However, considering the limitations of this in vitro 
study, it may be necessary to obtain more robust scientific evidence to support the choice of a 
prophylactic procedure in the treatment of periodontitis and peri-implant diseases.
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