• Title/Summary/Keyword: biodegradable scaffolds

Search Result 61, Processing Time 0.026 seconds

Antimicrobial Drug Release Scaffolds of Natural and Synthetic Biodegradable Polymers

  • Prabu, Periasamy;Kim, Kwan-Woo;Dharmaraj, Nallusamy;Park, Jong-Hoon;Khil, Myung-Seob;Kim, Hak-Yong
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.303-307
    • /
    • 2008
  • A series of biodegradable polymeric scaffolds was prepared by using a combination of natural (collagen) and synthetic (poly(caprolactone)) (PCL) polymers in various compositions. These scaffolds were soft, spongy, porous and transparent in nature and were characterized by thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. The entrapment efficiency and drug release activity of the scaffolds were analyzed using penicillin and tetracycline as antimicrobial drugs. The drug release activity of the scaffolds with various combinations of collagen and PCL were studied by measuring the optical density in a spectrophotometer at the following time intervals: 1,4, 24, 48 and 60 h. These scaffolds showed better and continuous drug release for up to 60 h. Even after such a long duration, a portion of the drug remained entrapped in the scaffolds, indicating that they can be utilized for wound healing applications.

Biodegradable Polymer-Nanoceramic Composite for Bone Regeneration

  • Kim, Sang-Soo;Park, Min-Sun;Kim, Byung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.179-179
    • /
    • 2006
  • PLGA/HA composite scaffold fabricated by GF/PL method showed enhanced mechanical property, hydrophilicity and osteoconductivity compared with the SC/PL scaffolds, and this enhancement was most likely due to a higher extent of exposure of HA particles to the scaffold surface. The biodegradable polymer/bioceramic composite scaffolds fabricated by the GF/PL method could enhance bone regeneration efficacy for the treatment of bone defects compared with conventional composite scaffolds.

  • PDF

Development of Three-dimensional Scaffold for Cartilage Regeneration using Microstereolithography (마이크로 광 조형 기술을 이용한 연골조직 재생용 3 차원 인공지지체 개발)

  • Lee, Seung-Jae;Kang, Tae-Yun;Park, Jung- Kyu;Rhie, Jong-Won;Hahn, Sei-Kwang;Cho, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1265-1270
    • /
    • 2007
  • Conventional methods for fabricating three-dimensional (3-D) scaffolds have substantial limitations. In this paper, we present 3-D scaffolds that can be made repeatedly with the same dimensions using a microstereolithography system. This system allows the fabrication of a pre-designed internal structure, such as pore size and porosity, by stacking photopolymerized materials. The scaffolds must be manufactured in a material that is biocompatible and biodegradable. In this regard, we synthesized liquid photocurable biodegradable TMC/TMP, followed by acrylation at terminal ends. And also, solidification properties of TMC/TMP polymer are to be obtained through experiments. Cell adhesion to scaffolds significantly affects tissue regeneration. As a typical example, we seeded chondrocytes on two types of 3-D scaffold and compared the adhesion results. Based on these results, the scaffold geometry is one of the most important factors in chondrocyte adhesion. These 3-D scaffolds could be key factors for studying cell behavior in complex environments and eventually lead to the optimum design of scaffolds for the regeneration of various tissues, such as cartilage and bone.

  • PDF

Implantation of Fetal Hepatocytes on Biodegradable Polymer Scaffolds (생분해성 고분자 담체를 이용한 태아 간세포의 이식)

  • 곽소정;최동호;백승삼;김상수;최차용;김병수
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2004
  • Whole liver transplantation, the currently available treatment of end-stage liver disease, has limitations including serious donor shortage, fatal surgical complications, risk of allograft rejection, and the requirement of life-long immunosuppression. In this study, we investigated the possibility of reconstructing liver tissues in vivo by implanting fetal hepatocytes on polymer scaffolds as a potential method to replace the current treatments. Fetal hepatocytes were freshly isolated from mice and seeded onto porous mesh scaffolds fabricated from polyglycolic acid, a biodegradable synthetic polymer. The seeded scaffolds were implanted into peritoneal cavity of athymic mice for one week. As a control, fetal hepatocytes were implanted without scaffold. One week after transplantation, liver-like tissues formed. Histological and immunohistochemical analyses indicated that the hepatocyles and liver tissue structures (bile ducts) were present in the newly formed tissues. In the control group, no transplanted hepatocytes were observed. Theses preliminary results suggest that liver tissues may be regeneration by transplanting fetal hepatocytes on polymer scaffolds.

Biodegradable Polymers for Tissue Engineering : Review Article (조직 공학용 생분해성 고분자 : 총설)

  • Park, Byoung Kyeu
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.251-263
    • /
    • 2015
  • Scaffolds play a crucial role in the tissue engineering. Biodegradable polymers with great processing flexibility and biocompatability are predominant scaffolding materials. New developments in biodegradable polymers and their nanocomposites for the tissue engineering are discussed. Recent development in the scaffold designs that mimic nano and micro features of the extracellular matrix (ECM) of bones, cartilages, and vascular vessels are presented as well.

In vitro Cartilage Regeneration using Primary Chondrocytes Cultured within Porous Poly(lactide-co-glycolide) Scaffolds

  • Yun, Jun-Jin;Go, Ye-Jeong;Baek, Jeong-Hwan;Park, Tae-Gwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.421-424
    • /
    • 2000
  • Cartilage injuries are frequent nowadays. The previous surgical treatment of cartilage defect was limited. Another approach in the treatment of cartilage injuries is the use of reconstitute cartilage consisting of chondrocytes cultured in suitable biodegradable scaffolds. Current studies have demonstrated the compatibility of chondrocytes with different biomaterials and the chondrogenesis in various types of porous scaffolds. The cell ingrowth into the porous scaffolds is modulated by initial cell loading efficiency. Therefore, well-interconnected pore structure and even pore distribution of the scaffolds are essential for efficient cell seeding. According to our previous work, well-interconnected macroporous scaffolds can be prepared by gas-foaming/salt-leaching method using ammonium bicarbonate salt as porogen additives. In this work, primary chondrocytes were cultured in PLGA 65/35 scaffolds fabricated by using our method. Cells seeded in the scaffolds showed well distribution by agitated seeding method. Histochemical staining of proteoglycans present in the scaffolds was used to visualize the chondrocyte ingrowth in the scaffolds. At 3 weeks, the population of chondrocytes was increased for the most part of the scaffolds, and extra cellular matrix (ECM) secretion was increased as culture periods progressed.

  • PDF

Renal Precursor Cell Transplantation Using Biodegradable Polymer Scaffolds

  • KIM , SANG-SOO;PARK, HEUNG-JAE;HAN, JOUNG-HO;PARK, MIN-SUN;PARK, MOON-HYANG;SONG, KANG-WON;JOO, KWAN-JOONG;CHOI, CHA-YONG;KIM, BYUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.105-111
    • /
    • 2005
  • End-stage renal disease is a fatal and devastating disease that is caused by progressive and irreversible loss of functioning nephrons in the kidney. Dialysis and renal transplantation are the common treatments at present, but these treatments have severe limitations. The present study investigated the possibility of reconstructing renal tissues by transplantation of renal precursor cells to replace the current treatments for end-stage renal disease. Embryonic renal precursor cells, freshly isolated from metanephroi of rat fetus at day 15 post-gestation, were seeded on biodegradable polymer scaffolds and transplanted into peritoneal cavities of athymic mice for three weeks. Histologic sections stained with hematoxylin & eosin and periodic acid-Schiff revealed the formation of primitive glomeruli, tubules, and blood vessels, suggesting the potential of embryonic renal precursor cells to reconstitute renal tissues. Immunohistochemical staining for proliferating cell nuclear antigen, a marker of proliferating cells, showed intensive nuclear expression in the regenerated renal structures, suggesting renal tissue reconstitution by transplanted embryonic renal precursor cells. This study demonstrates the reconstitution of renal tissue in vivo by transplanting renal precursor cells with biodegradable polymer scaffolds, which could be utilized as a new method for partial or full restoration of renal structure and function in the treatment of end-stage renal disease.

Preparation of Poly(lactic acid) Scaffolds by the Particulate Leaching (염 추출법에 의한 폴리락틱산 다공성 지지체 가공)

  • Lee, Ji-Hae;Lee, Jong-Rok;Kang, Ho-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.324-331
    • /
    • 2003
  • Particulate leaching method for the preparation of porous PLLA scaffolds was carried out and especially, the effect of PLLA/$CHCl_3$ solution concentration on the salt leaching rate and the pore structure of PLLA scaffolds were considered. It was found that maintaining lower PLLA/$CHCl_3$ concentration and higher $CHCl_3$ evaporation temperature in the preparation of PLLA/NaCl mixtures resulted in the enhancement of salt leaching rat e and higher porosity. This is understood that those conditions could minimize the formation of dense PLLA layer on the surface of PLLA/NaCl mixture as well as introducing better porosity on the surface. Higher salt leaching temperature accelerated the salt leaching rate but it seems that there is no influence on the porosity of PLLA scaffolds.