Browse > Article
http://dx.doi.org/10.12925/jkocs.2003.20.4.7

Preparation of Poly(lactic acid) Scaffolds by the Particulate Leaching  

Lee, Ji-Hae (Center for Advanced Functional Polymers)
Lee, Jong-Rok (Center for Advanced Functional Polymers)
Kang, Ho-Jong (Dept of Polymer Sci. and Eng., Dankook University)
Publication Information
Journal of the Korean Applied Science and Technology / v.20, no.4, 2003 , pp. 324-331 More about this Journal
Abstract
Particulate leaching method for the preparation of porous PLLA scaffolds was carried out and especially, the effect of PLLA/$CHCl_3$ solution concentration on the salt leaching rate and the pore structure of PLLA scaffolds were considered. It was found that maintaining lower PLLA/$CHCl_3$ concentration and higher $CHCl_3$ evaporation temperature in the preparation of PLLA/NaCl mixtures resulted in the enhancement of salt leaching rat e and higher porosity. This is understood that those conditions could minimize the formation of dense PLLA layer on the surface of PLLA/NaCl mixture as well as introducing better porosity on the surface. Higher salt leaching temperature accelerated the salt leaching rate but it seems that there is no influence on the porosity of PLLA scaffolds.
Keywords
biodegradable polymerslpoly(lactic acid); scaffolds; particulate leaching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. W. Hutmacher, Biotechnology, 12, 689 (1994)   DOI   ScienceOn
2 A. G. Mikos, A. J. Sarakinos, S. M. Leite, J. P. Vacanti, and R. Langer, Biomaterials, 14, 323 (1993)   DOI   ScienceOn
3 L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)
4 Y. S. Nam and T. G. Park, Biomaterials, 20, 1783 (1999)   DOI   ScienceOn
5 R. C. Thomson, M. J. Yaszemski, J. M. Powers, and A. G. Mikos, J. Biomater Sci. Polym. Ed., 7, 23 (1995)   DOI   ScienceOn
6 D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanto, and R. Langer, Biomaterials, 17, 1417 (1996)   DOI   ScienceOn
7 K. Whang, C. H. Tomas, K. E. Healy, and G. Nuber, Polymer, 36, 837 (1995)   DOI   ScienceOn
8 D. L. Wise, 'Biopolymeric Controlled System', Vol. 1, CRS Press, Boca Raton, Ch. 8 (1985)
9 Y. S. Nam, J. J. Yoon, and T. G. Park, J. Biomed. Mater. Res., 53, 1 (2000)   DOI   ScienceOn
10 L. D. Harris, B. S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998)   DOI   ScienceOn
11 R. Langer and J. P. Vacanti, Science, 260, 920 (1993)   DOI
12 L. G. Cima, J. P.Vacanti, D. Ingber, D. Mooney, and R. Langer, J. Biomech. Eng., 113, 143 (1991)   DOI   ScienceOn
13 S. Gogolewski and A. J. Pennings, Colloid Polrm. Sci., 261, 477 (1983)   DOI   ScienceOn
14 K. P. Andriano, Y. Tabata, Y. Ikada, and Y. Heller, J. Biomed. Mater. Res., 48, 602 (1999)   DOI   ScienceOn
15 A. G. Mikos, Y. Bae, L. G. Cima, D. Ingber, J. P. Vacanti, and R. Langer, J. Biomed. Mater. Res., 27, 183 (1993)   DOI
16 A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bae, R. Langer, D. N. Winslow, and J. P. Vacanti, polymer, 35, 1068 (1994)   DOI   ScienceOn
17 A. Park, B. Wu, and L. G. Griffith, J. Biomater. Sci. Polym. Ed., 9, 89 (1998)   DOI   ScienceOn