• Title/Summary/Keyword: bifurcation analysis

Search Result 266, Processing Time 0.03 seconds

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Dynamic characteristics of a CSTR with MMA polymerization

  • Ahn, Jong-Pil;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.100-105
    • /
    • 1992
  • A mathematical model is developed for a CSTR in which free radical solution polymerization of methyl methacrylate(MMA) takes place. It turns out that five ordinary differential equations are to be treated simultaneously in order to predict the reactor performance. Although the reaction proceeds under the conditions of relatively low temperature and pressure, the system shows very complex bifurcation features due to the diffusion limitation (gel effect) and the temperature dependence of the kinetic parameters and physical properties. The effects of various system parameters on the reactor performance as well as on the polymer properties are investigated by using the bifurcation analysis. The application of the singularity theory enables us to divide the parameter space into several different regions, in each of which the system takes a unique steady state structure. Under certain circumstances, complex dynamic features such as HB points and limit cycles are observed and these should be taken into consideration in the reactor design.

  • PDF

Stability Analysis ofn HTS Current Lead with Constant Safety Factor (안전율이 일정한 초전도 전류도입선의 안정성해석)

  • Seol, Seoung-Yun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.15-19
    • /
    • 2000
  • The stability of variable cross-sectional area HTS current lead is considered. The cross-sectional area is varied to have a constant safety factor which is defined as the ratio of operating current and critical current of superconductor. As the constant area HTS lead, the variable cross-sectional area HTS lead also has three steady states above the bifurcation point and only one steady state below the bifurcation point. The temperature profiles and current sharing ratios for each steady state are calculated. The heat dissipation into cryogenic system for super-conducting, intermediate, and upper states are compared. For Bi-2333 sheathed with silver-gold alloy 2m length of current lead, and the maximum temperature of upper state seems to be burn-out free below 5m length.

  • PDF

Analysis of Mixed-mode Crack Propagation by the Movable Cellular Automata Method

  • Chai, Young-Suck;Lee, Choon-Yeol;Pak, Mikhail
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.66-70
    • /
    • 2008
  • The propagation of a mixed-mode crack in soda-lime silica glass is modeled by movable cellular automata (MCA). In this model, a special fracture criterion is used to describe the process of crack initiation and propagation. The results obtained using the MCA criterion are compared to those obtained from other crack initiation criteria, The crack resistance curves and bifurcation angles are determined for various loading angles. The MCA results are in close agreement with results obtained using the maximum circumferential tensile stress criterion.

A Study on the Stability Problems of the Latticed Domes (래티스돔의 안정문제에 관한 연구)

  • 한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.9-18
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard in geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.

Non-linear vibration and stability analysis of a partially supported conveyor belt by a distributed viscoelastic foundation

  • Ghayesh, M.H.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2007
  • The main source of transverse vibration of a conveyor belt is frictional contact between pulley and belt. Also, environmental characteristics such as natural dampers and springs affect natural frequencies, stability and bifurcation points of system. These phenomena can be modeled by a small velocity fluctuation about mean velocity. Also, viscoelastic foundation can be modeled as the dampers and springs with continuous characteristics. In this study, non-linear vibration of a conveyor belt supported partially by a distributed viscoelastic foundation is investigated. Perturbation method is applied to obtain a closed form analytic solutions. Finally, numerical simulations are presented to show stiffness, damping coefficient, foundation length, non-linearity and mean velocity effects on location of bifurcation points, natural frequencies and stability of solutions.

A MATHEMATICAL MODEL OF TRANSMISSION OF PLASMODIUM VIVAX MALARIA WITH A CONSTANT TIME DELAY FROM INFECTION TO INFECTIOUS

  • Kammanee, Athassawat;Tansuiy, Orawan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.685-699
    • /
    • 2019
  • This research is focused on a continuous epidemic model of transmission of Plasmodium vivax malaria with a time delay. The model is represented as a system of ordinary differential equations with delay. There are two equilibria, which are the disease-free state and the endemic equilibrium, depending on the basic reproduction number, $R_0$, which is calculated and decreases with the time delay. Moreover, the disease-free equilibrium is locally asymptotically stable if $R_0<1$. If $R_0>1$, a unique endemic steady state exists and is locally stable. Furthermore, Hopf bifurcation is applied to determine the conditions for periodic solutions.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Simply supported boundary condition for bifurcation analysis of functionally graded material: Thickness control by exponential fraction law

  • Shadi Alghaffari;Muzamal Hussain;Mohamed A. Khadimallah;Faisal Al Thobiani;Hussain Talat Sulaimani
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.303-312
    • /
    • 2023
  • In this study, the bifurcation analysis of functionally graded material is done using exponential volume fraction law. Shell theory of Love is used for vibration of shell. The Galerkin's method is applied for the formation of three equations in eigen value form. This eigen form gives the frequencies using the computer software MATLAB. The variations of natural frequencies (Hz) for Type-I and Type-II functionally graded cylindrical shells are plotted for exponential volume fraction law. The behavior of exponent of volume fraction law is seen for three different values. Moreover, the frequency variations of Type-I and -II clamped simply supported FG cylindrical shell with different positions of ring supports against the circumferential wave number are investigated. The procedure adopted here enables to study vibration for any boundary condition but for brevity, numerical results for a cylindrical shell with clamped simply supported edge condition are obtained and their analysis with regard various physical parameters is done.