• Title/Summary/Keyword: bias field

Search Result 724, Processing Time 0.026 seconds

Effects of electrode configurations on uniformity of copper films on flexible polymer substrate prepared by ECR-MOCVD (ECR-MOCVD에 의해 연성 고분자 기판에 제조된 구리막의 균일도에 전극의 형태가 미치는 영향)

  • 전법주;이중기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • Copper films were prepared by using ECR-MOCVD(Electron Cyclotron Resonance Metal Organic Chemical Vapor Deposition) coupled with a DC bias system. The DC bias is connected to the electrode which placed 1∼3cm above the polymer substrate. The pulse electrical field around the electrode attracts the positive charged copper ions generated from the dissociation of copper precursor, $Cu(hfac)_2$, under ECR plasma. Condensation of supersaturated copper ions in the space between the electrode and substrate, makes it possible to deposit copper film on the polymer substrate even at room temperature. In this study, optimization of the electrode configuration was carried out in order to obtain the uniform films. The uniformity of the deposited films were closely related to the parameters of electrode geometry such as electrode shape, thickness, grid size and the spacing between electrodes. The most uniform copper film was observed with the electrode that enabled uniform electrical field distribution across the whole dimension of electrode.

A Study on the Temperature Variation Characteristics of Power VDMOSFET (전력 VDMOSFET의 온도변화 특성에 관한 연구)

  • Lee, Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.278-284
    • /
    • 1986
  • Double-diffused metal oxide power semiconductor field effect transistors are used extensively in recent years in various circuit applications. The temperature variation of the drain current at a fixed bias shows both positive and negative resistance characteristics depending on the gate threshold voltage and gate-to source bias votage. In this paper, the decision method of the gate crossover voltage by the temperature variation and a new method to determine the gate threshold voltage graphecally are presented.

  • PDF

Subthreshold Current Model of FinFET Using Three Dimensional Poisson's Equation

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • This paper has presented the subthreshold current model of FinFET using the potential variation in the doped channel based on the analytical solution of three dimensional Poisson's equation. The model has been verified by the comparison with the data from 3D numerical device simulator. The variation of subthreshold current with front and back gate bias has been studied. The variation of subthreshold swing and threshold voltage with front and back gate bias has been investigated.

Reducing Bias of the Minimum Hellinger Distance Estimator of a Location Parameter

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.213-220
    • /
    • 2006
  • Since Beran (1977) developed the minimum Hellinger distance estimation, this method has been a popular topic in the field of robust estimation. In the process of defining a distance, a kernel density estimator has been widely used as a density estimator. In this article, however, we show that a combination of a kernel density estimator and an empirical density could result a smaller bias of the minimum Hellinger distance estimator than using just a kernel density estimator for a location parameter.

  • PDF

Dependence of Electrical Characteristics on Back Bias in SOI Device (SOI(Silicon-on-Insulator) 소자에서 후면 Bias에 대한 전기적 특성의 의존성)

  • 강재경;박재홍;김철주
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.43-44
    • /
    • 1993
  • In this study SOI MOSFET model of the structure with 4-terminals and 3-interfaces is proposed. An SOI MOSFET is modeled with the equivalent circuit considered the interface capacitances. Parameters of SOI MOSFET device are extracted, and the electrical characteristics due to back-bias change is simulated. In SOI-MOSFET model device we describe the characteristics of threshold voltage, subthreshold slope, maxium electrical field and drain currents in the front channel when the back channel condition move into accmulation, depletion, and inversion regions respectively.

  • PDF

Field emission characteristics of carbon nanfiber bundles

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.211-214
    • /
    • 2004
  • Carbon nanofiber bundles were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition system. These bundles were vertically well-grown under the high negative bias voltage condition. The bundles were composed of the individual carbon nanofiber having less than 100 nm diameters. Turn-on voltage of the field emission was measured around 0.8 V/$\mu\textrm{m}$. Fowler-Nordheim plot of the measured values confirmed the field emission characteristic of the measured current.

Parameter Mismatches and its Biases in Ocean Matched Field Processing (해양 정합장처리에서 매개변수 오정합과 바이어스)

  • Park Jae-Eun;Kim Jea-Soo;Shin Kee-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.87-96
    • /
    • 2005
  • In matched field processing (MEP), the observed acoustic field data is basically correlated with the replica produced by the modeling. therefore the results of source localization and correlation is limited by the mismatch of the environment and sensor location. In this paper. the effects of mismatch in environment and system on the bias in estimating the source location are investigated in the context of source localization. In the Pekeris waveguide, the simulation shows that the mismatches in environment and system, can cause a significant biases in the source localization and a degradation in MFP correlation. Mismatch caused by uncertainties in array tilt and depth, bottom depth, bottom sound speed, etc. causes degradation in source localization performance.

Size and Aspect Ratio Effects on the Magnetic Properties of a Spin-Valve Multilayer by Computer Simulation

  • Lim, S.H.;Han, S.H.;Shin, K.H.;Kim, H.J.
    • Journal of Magnetics
    • /
    • v.5 no.3
    • /
    • pp.90-98
    • /
    • 2000
  • The change in the magnetic properties of a spin-valve multilayer with the structure IrMn (9 m)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiEe (6 nm) is investigated as a function of the size and the aspect ratio. At a fixed aspect ratio (the length/width ratio) of 2, the magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 $\mum$, and, at a length of 1 $\mum$, they become even more dominant. In the case of a fixed multilayer size (2.4 $\mum$) which is indicated by the sum of the length and the width, magnetization change occurs by continuous spin-reversal and M-H loops are characterized by no or very small hysteresis at aspect ratios smaller than unity, At aspect ratios greater than unity, magnetization change occurs by spin-flip resulting in squared hysteresis loops. A very large changes in the coercivity and the bias field is observed, and these results are explained by two separate contributions to the total magnetostatic interactions: the coercivity by the self-demagnetizing field and the bias field by the interlayer magnetostatic interaction field.

  • PDF

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF

Dynamic Magneto-mechanical Behavior of an Iron-nickel-based Ferromagnetic Alloy with Constant Elasticity

  • Bian, Leixiang;Wen, Yumei;Li, Ping;Gao, Qiuling;Liu, Xianxue
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.66-70
    • /
    • 2009
  • The dynamic magneto-mechanical behaviors in a type of iron-nickel-based ferromagnetic alloy with constant elasticity were investigated as a function of both the DC bias magnetic field ($H_{dc}$) and the frequency. The rectangular plate-like samples were excited to vibrate at a half-wavelength, longitudinal resonance by an AC magnetic field superimposed with various $H_{dc}$. The experimental results found that the strain coefficient at resonance reached 819.34 nm/A and the effective mechanical quality factor ($Q_m$) was greater than 2000. The ratio of the maximum variation of the Young's modulus over $H_{dc}$ to the value of the Young's modulus at a zero bias field was only ${\sim}0.83%o$ because of the so-called constant elasticity. The resonant strain coefficients and $Q_m$ are strongly dependent on $H_{dc}$, which indicates a promising potential for use in DC and quasistatic magnetic field sensing.