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Abstract

Since Beran (1977) developed the minimum Hellinger distance 
estimation, this method has been a popular topic in the field of robust 
estimation. In the process of defining a distance, a kernel density 
estimator has been widely used as a density estimator. In this article, 
however, we show that a combination of a kernel density estimator and 
an empirical density could result a smaller bias of the minimum Hellinger 
distance estimator than using just a kernel density estimator for a 
location parameter.
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1. Background and Motivation

Robustness procedures typically obtain robustness at the expense of not being 

optimal at the true model. However, Beran (1977) suggested the use of the 

minimum Hellinger distance (MHD) estimator which has certain robustness 

properties and is asymptotically efficient at the true model.  Let X 1,X 2,…,X n
 

be a random sample from a population having a continuous probability which is a 

member of some postulated parametric family of densities { f θ:θ∈Θ}. The MHD 

estimator of θ   is defined as a value of  θ̂= t( ĝ n )  which minimizes 

∥f
1/2
θ - ĝ

1/2 n
∥  ( ∥⋅∥   is the usual  L 2   norm) where  ĝ n   is a suitable 

nonparametric density estimator such as
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ĝ n=
1
nh n

∑
n

i=1
w(
x-X i

h n ),
    

where  w   is a density on R
k  and {h n}  is sequence of constants converging to 

zero. t( ĝ n )  is a functional representation for θ̂  and note that t( f θ)≡θ . 

Tamura and Boos (1986) provided a very important theorem which concluded with 

the asymptotic statement about the estimator  for multivariate location and 

covariance as follows;

Theorem 1. (Tamura and Boos (1986)) Let  X 1,X 2,…,X n
  be a sample of 

independent and identically distributed  k  -vectors with density  g   and let 

ĝ n (x)   be a kernel estimator. Suppose there exists the MHD estimator  

θ̂= t( ĝ n ), then under some conditions,

n( t( ĝ n)-t(g)-B n)→N(0,Σ g),

where 

1. Let s θ= f
1/2
θ
 and let s θ ̇   and s ̈ θ  be the vector of the first and the second 

partial derivatives of s θ  with respect to θ .  

2. ψ g(x)=-[
⌠
⌡ s t( g )̈ ( x )g

1/2 (x)dx] - 1/2 s t( g )̇ ( x )/2g
1/2 (x)

3.  Σ g=
⌠
⌡ψ g(x)ψ g(x)

Tg(x)dx.

4. B n=2C
*
n
⌠
⌡ψ g(x) g̃ n 1/2 (x)g

1/2(x)dx  with C
*→1 n×n  (identity matrix) in 

probability.

5. g̃ n=E[ ĝ n ]

6. When g= f θ, t( f θ)=θ  and the covariance matrix Σ g= I f  (information 

matrix).

The existence of the bias term B n
 in the above theorem is a critical drawback 

of the theorem, though the actual bias could become negligible when a data set is 

large.  In this article, we are trying to find a way to reduce or remove the bias 

and we are able to find the solution in the form of a density estimator by taking 

the combination of an empirical density and a kernel density as a density 

estimator. It is shown that this new technique could reduce biases of MHD 

estimators under various distributions. Only the location parameter estimation is 

considered in this article - though results are not mentioned in this article, 

simulations for estimating a scale parameter were unsatisfactory and research is 

still on its way.
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2. Bias of the MHDE

We begin by considering how to remove or reduce the bias Bn  in asymptotic 

g n̂→E[ g n̂ ] =
1
nh n

∑
n

i=1
E X i[w(

x-X i

h n )]= 1
h n
⌠
⌡w( x-yhn )dG(y),

sense. Since we have by the law of large number as n→∞, nh n→∞,

and at the model  ĝ n→ f̃ θ≠f θ   ( g n̂  is not an asymptotically unbiased 

estimator for f θ), 

f θ̃( x )≡
1
h n
⌠
⌡w( x-yh n )dF θ(y),

where

if F θ
 is the cumulative distribution function of  f θ . 

Comment:

 In addition to n→∞, nh n→∞, if we have hn→0, then f̃ θ→f θ  and finally 

B n → -C *n [
⌠
⌡ s θ
̈ ( x ) f 1/2 θ (x)] - 1/2⌠⌡s θ ̇ ( x ) f̃

1/2 θ
(x)dx

→ -C *n [
⌠
⌡ s θ
̈ ( x ) f 1/2 θ (x)] - 1/2⌠⌡s θ ̇( x )f1/2θ (x)dx

∝ ⌠
⌡
1
2
f ̇ θ (x) f - 1/2 θ

(x) f
1/2 θ (x)dx=0.

Conjecture: By the comment in the above, we know that to get rid of the bias 

term B n
, hn  should go to 0. Therefore, ‘smoothness’ of the density estimator 

may  need to be dropped for reducing bias. We conjecture that MHD with an 

empirical density estimator may perform better than MHD with a kernel density 

estimator. Consider an empirical density estimator,  

ĝ e (x)=
1
n ∑

n

i=1
w(X i,x),

by putting w( t,x)= 1/b(x), where  b( t)  is the width of the bin containing t, if 

x and t fall in the same bin, or w( t,x)= 0  otherwise.
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Though we use an empirical density in stead of smoothed kernel densities,  

Theorem 1 still works. 

Simulations: In order to verify that conjecture, we run simulations as follows: 

Generate 500 samples of size 10, 20 and 50 from N(0,1), a contaminated 

normal distribution with 10% contamination of N(3,1)  (denoted by 10%3N), a 

contaminated normal distribution with 10% contamination of N(10,1)  (denoted 

by 10%10N) and t-distribution with three degrees of freedom.

Calculate (i) MHD estimators with an empirical density (MHDe) and (ii) MHD 

estimators with the Gaussian kernel density (MHDk).  

b opt= 6
1/3
R(f')

- 1/3
n
- 1/3  

and h opt= k
- 4/5
2 R(k) 1/5R(f'') - 1/5n - 1/5  are used as the optimal bin width and 

bandwidth, respectively, which minimize the approximate mean integrated square 

error with an empirical density (AMISEe) and the approximate mean integrated 

square error with a kernel density (AMISEk) as below. For this simulation, we 

use the basic optimal values; 

b opt= 3.5σn
- 1/3 and  h opt=1.06 σn

- 1/5.

With an empirical density estimator ĝ e  ,  we have 

AMISE e=
1
nb
+
1
12
b 2R(f'),

where the roughness function is defined by  R(φ)=⌠⌡φ
2
(x)dx  (Scott, 1992). 

With a  kernel density estimator ĝ k, 

AMISE k=
R(k)
nh

+
1
4
h 4k 42R(f''),

where h  is a bandwidth, k(⋅)  is a given kernel function and k 22=
⌠
⌡t

2k(t)dt  

(Silverman, 1986). 

Observation: In Table 1, we can observe that the MHDe tends to have smaller 

bias than the MHDk under true distributions such as N(0,1)  and t(3), but under 

mixture distributions like 10%3N  and 10%10N   with few exception where 

n=10  the biases of the MHDk are smaller than those of the MHDe. The 

simulation  implies that using either only an empirical density estimator or a 
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kernel density estimator as usual does not always produce promising results. 

We can argue that for the mixed distribution such as 10%3N  and 10%10N  

empty bins like the ones in Figure 2 could cause increase the discrepancy between 

a histogram and a model density, that is, a smoothed density estimator like a 

kernel density estimator is better to approximate a model density than an 

empirical density estimator. Therefore, since we do not know a exact form of 

model density in practice, it is safe working with a density estimator, which is 

smooth on the intervals of empty bins and at time same ensures smaller bias like 

an empirical density. 

<Figure 1> A histogram, a kernel density (dot) and a combination of a 

histogram and a kernel density with α=0.5  (solid) based on a random 

sample of size 50 from 10%10N  (curve with +)
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3. Bias reduction for the MHDE

In the previous section, we know that ĝ n→f θ⇒B n→0, that is,  the closeness 

of ĝ n  and f θ  are is a key factor to reduce bias of MHD estimator. We also 

know that closeness of a density estimator and a model density can be measured 

by the approximate mean integrated square error. In Figure 2 shows, the AMISE 

with an empirical density are smaller/larger than that with a kernel estimator 

depending on the width of a bin or a bandwidth (the Epanechnikov kernel is 

used). Since we do not know a true distribution in practice, we argue that using  

either only an empirical density estimator or only a kernel density estimator is not 

a good idea in reducing bias of an MHD estimator.  

 We propose to use a combined density estimator such as 

ĝ ek=α ĝ e+(1-α) ĝ k.  Simple manipulations give for α∈[0,1]  
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AMISE ek=α
2AMISE e+(1-α)

2AMISE k+higher-order terms in h.

Figure 2 shows that AMISE with combined density estimator ( α=0.5  ) is 

between two curves (AMISE with an empirical density estimator and a kernel 

density estimator). We need a properly chosen α to form ĝ ek , which could be 

found as the value of α minimizing AMISE ek
, that is,  to solve the following 

equations; 

∂AMISE ek/∂b=0,  ∂AMISE ek/∂h=0,  and  ∂AMISE ek/∂α=0,

where b̂  and ĥ  be the solutions from the first and second equations, respectively. 

By plugging b̂  and ĥ   into the third equation, we get an optimal value for α,

α̂=
AMISE k

(AMISE e+AMISE k)
| b= b̂,h= ĥ.  

With b̂= b opt  and ĥ= hopt, mentioned in section 2,  we have

α̂=
(5/4)[k 2R(k)]

4/5R(f'') 1/5n - 4/5

(3/4)
2/3
R(f')

1/3
n
- 2/3
+(5/4)[k 2R(k)]

4/5
R(f'')

1/5
n
- 4/5 .

Table 1 shows that the biases of MHDek with α̂ are between those of MHDe 

and MHDk. In practice, since we don't know the exact underlying distribution, it 

would be  useful and safe considering MHDek along with MHDk. The 

theoretically sound estimator for  α  will be obtained by replacing R( f')  and 

R( f'')  by corresponding data driven estimators such as ones in Sheather & Jones 

(1991). We would like to reserve detail discussion for the next time, until the 

materials in this article are proven to be reasonable.

However, with help of a fast computer, we can calculate the Hellinger distance on 

a grid of (α,μ)  and pick up the α at which the distance is minimum by 

searching it on a fine grid. For example, here we have a sample of size 10 from 

10%10N  : { 10.986162084   0.566889305   0.003544275    -0.404087363  

0.511053799, -0.183609944   -1.244355509   0.091889855   -0.166264207 1.514067179}, 

the Hellinger distance is minimized when α=0.345  and the corresponding MHD 

estimate is 0.1866 (the true mean is 0). The other estimates are as follows; the 

mean is 1.1675, the median is .0477, the Huber estimator (with 95% efficiency at 

normal distribution) is 1.1417. 
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<Figure 2> AMISE for a bin and a bandwidth; an empirical density 

estimator, a kernel density estimator and a combined estimator with  

α=0.5.
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<Table 1>  Biases of the MHD estimators

No of 

Obs.

density

 estimator

distribution

N(0,1) 10%3N 10%10N t(3)

10

empirical( b opt) -.0260 .0376 .0315 -.0073

kernel( h opt) -.0240 .0340 -.0521 -.0174

mixed( α̂) -.0237 .0336 -.0411 -.0111

mean -.0050 .2900 .9851 -.0057

median -.0140 .1178 .1380 .0116

20

empirical( b opt) -.0332 .0387 -.1030 -.0639

kernel( h opt) -.0457 .0261 -.0462 -.0712

mixed( α̂) -.0394 .0367 -.0453 -.0715

mean -.0160 .2816 1.0590 -.0112

median -.0140 .1133 .1431 -.0246

50

empirical( b opt) -.0206 .1018 -.0681 -.0242

kernel( h opt) -.0327 .0874 -.0511 -.0593

mixed( α̂) -.0287 .0916 -.0516 -.0493

mean -.0021 .2948 1.0001 -.0012

median .0091 .1258 .1420 .0019
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3. Further researches and conclusions

We proposed a new type of a density estimator, which is a combination of an 

empirical and a kernel density estimator, for the MHD estimation. On the condition 

that we do not know the true underlying distribution in practice, the MHD with 

newly proposed density estimator is also better recommended than just keep using 

only a kernel density estimator. Mathematical exposition was carried out but still 

numerical problems are remained to be more investigated.

References

1. Beran, R. (1977). Minimum Hellinger distance estimations for parametric 

models, The Annals of Statistics, 5, 445-463.

2. Scott, David W. (1992). Multivariate Density Estimation: Theory. 

Practice, and Visualization, John Wiley & Sons, Inc., New York.

3. Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth 

selection method for kernel density estimation. Journal of the Royal 

Statistical Society B, 53, 683-690.

4. Silverman, B. W. (1986). Density Estimation for Statistics and Data 

Analysis, Chapman and Hall, London.

5. Tamura, R. N. and Boos, D. D. (1986). Minimum Hellinger distance 

estimation for multivariate location and covariance, Journal of the 

American Statistical Association, 81, 223-229.             

[ received date : Dec. 2005, accepted date : Feb. 2006 ]


