• 제목/요약/키워드: beta-catenin

검색결과 263건 처리시간 0.03초

위 선암종에서의 E-cadherin, $\beta$-catenin 및 c-Met 단백 발현에 대한 연구 (Study of the Expression of E-cadherin, $\beta$-catenin, and c-Met in Gastric Adenocarcinomas)

  • 조성진;김민경;신봉경;민연기;조민영;서성옥;원남희;채양석
    • Journal of Gastric Cancer
    • /
    • 제1권2호
    • /
    • pp.92-99
    • /
    • 2001
  • Purpose: E-cadherin is an adhesion molecule essential for tight connection between cells, forming the cadherin/catenin complex. Truncated $\beta$-catenin disrupts the interaction between E-cadherin and $\alpha$-catenin, leading to the loss of intercellular adhesion. Met protein, the hepatocyte growth factor receptor, plays important roles in signal transduction. We investigated the relationships between the expressions of E-cadherin, $\beta$-catenin, and c-met protein and the clinicopathological and prognostic parameters in gastric adenocarcinomas. Materials and Methods: The patterns of E-cadherin, $\beta$-catenin, and c-met protein expression were studied using immunohistochemistry in formalin-fixed, paraffin-embedded archival tissues from 76 surgically resected gastric adenocarcinomas. Results: Increased expressions of E-cadherin, $\beta$-catenin, and c-met were more significantly correlated in early gastric cancers (EGC) than in advanced gastric cancers (AGC) (P=0.002, P=0.003 and P=0.026). The positive immunoreactivities of all three markers were markedly lower in signet ring-cell type and poorly differentiated type lesions than in intestinal-type lesions. Decreased expression of the $\beta$-catenin protein correlated well with increased tumor invasion depth (P=0.039), and increased lymph node metastasis correlated well with reduced expression of c-met (P=0.046). Conclusion: In gastric cancers, reduced expressions of the E-cadherin, $\beta$-catenin, and c-met proteins may play some role in poorer tumor differentiation, deeper tumor invasion, and increased lymph node metastasis. Also, the c-met gene is thought to play a specific role in the mechanism of the yet unknown catenin action.

  • PDF

홍만병초 분획물에 의한 HT-29대장암 세포의 Wnt/β-catenin 신호전달 조절 (Regulation of Wnt/β-catenin Signal Transduction in HT-29 Colon Cancer Cells by a Rhododendron brachycarpum Fraction)

  • 심보람;남영선;이자복
    • 생명과학회지
    • /
    • 제29권8호
    • /
    • pp.871-878
    • /
    • 2019
  • 본 연구에서는 Rhododendron brachycarpum (RB, 홍만병초)의 80% 메탄올 추출물 및 분획물의 항암 활성을 규명하고자 하였다. RB n-hexane 분획물은 HT-29 세포에서 가장 높은 활성 저해를 보였다($IC_{50}=20.2{\pm}1.2{\mu}g/ml$). 더욱이, 콜로니와 구형 형성은 수와 크기는 유의적으로 감소시켰다. RB의 n-hexane 분획물에서($0.22{\pm}0.02$ fold change) TOP / FOP 플래시 리포터 억제 활성은 추출물 및 다른 분획물 보다 낮게 나타났다. n-hexane 및 ethyl acetate 분획물은 세포 내 ${\beta}-catenin$의 발현을 조절하였다. 2 차 대사 산물이 ${\beta}-catenin$ 분해를 감소시킬 수 있는지 여부를 조사하기 위해 Western blot을 실시한 결과 n-hexane 분획물에서 $p-GSK3{\beta}$를 조절하였으며, 세포내 ${\beta}-catenin$은 핵에서 정량적인 변화를 가져왔다. 이러한 결과는 RB의 n-hexane 분획물로부터 천연 항암 물질을 포함하고 있음을 보여줍니다.

Prognostic Value of β-catenin Expression in Breast Cancer Patients: a Meta-analysis

  • Zhang, De-Pu;Li, Xiao-Wei;Lang, Jing-He
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5625-5633
    • /
    • 2015
  • Background: ${\beta}$-catenin plays a crucial role in the progression of breast cancer (BC) and a prognostic role of in BC patients has been widely reported. However, controversy still remains. Materials and Methods: Identical search strategies were used to search relevant literature in electronic databases updated to July 1, 2014. Individual hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted and pooled HRs with 95%CIs were used to evaluate the strength of association between positive ${\beta}$-catenin expression in different subcellular locations and survival results of BC patients. Subgroup and meta-regression analyses were performed to explore heterogeneity. Funnel plots of Begg's and Egger's linear regression test were used to investigate publication bias. Heterogeneity and sensitivity were also assessed. All the work was completed using STATA. Results: A total of 2,204 patients from 12 evaluative studies were finally included. Pooled HRs and 95%CIs suggested that ${\beta}$-catenin expression in cytoplasm/nucleus had an unfavorable impact on both overall survival (OS) (HR: 1.93, 95%CI: 1.40-2.65) and disease free survival (DFS)/ recurrent free survival (RFS) (HR: 1.60, 95%CI: 1.20-2.13) in BC patients. However, here was no significant association between ${\beta}$-catenin expression in the membranes with OS (HR: 0.65, 95%CI: 0.42-1.02) or DFS/RFS (HR: 0.66, 95%CI: 0.38-1.13). Publication bias was absent in all of the four outcomes. Sensitivity analysis revealed that the results of this meta-analysis were robust. Conclusions: Positive ${\beta}$-catenin expression in cytoplasm/nucleus rather than in membrane is a significant prognostic factor in patients with BC who have been surgically treated.

FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin

  • Liang, Tao;Ye, Xuxiao;Liu, Yuanyuan;Qiu, Xinkai;Li, Zuowei;Tian, Binqiang;Yan, Dongliang
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.8.1-8.12
    • /
    • 2018
  • FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role (s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a ${\beta}$-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and ${\beta}$-catenin were measured by western blot and realtime PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that ${\beta}$-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted ${\beta}$-catenin protein expression through the inhibition of ${\beta}$-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of ${\beta}$-catenin.

Expression of the E-cadherin/β-catenin/tcf-4 Pathway in Gastric Diseases with Relation to Helicobacter pylori Infection: Clinical and Pathological Implications

  • Yu, Xiu-Wen;Xu, Qian;Xu, Ying;Gong, Yue-Hua;Yuan, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.215-220
    • /
    • 2014
  • Objective: To determine the expression of E-cadherin, ${\beta}$-catenin, and transcription factor 4 (TCF4) proteins in gastric diseases with relation to Helicobacter pylori infection. Methods: A total of 309 patients including 60 with superficial gastritis (SG), 57 with atrophic gastritis (AG) and 192 with gastric cancer (GC), were enrolled. The expression of E-cadherin, ${\beta}$-catenin, TCF4 proteins in the gastric mucosa was detected by immunohistochemistry and H. pylori infection by immunohistochemistry and PCR. Results: The expression rates of E-cadherin were significantly higher in SG and AG than in GC (P<0.01), while those of ${\beta}$-catenin in the nucleus were significantly lower in SG and AG than in GC (P<0.05). In GC cases, the expression rates of E-cadherin, ${\beta}$-catenin and TCF4 were significantly higher in the intestinal type than in the diffuse type (P<0.05). In GC patients, the expression rate of E-cadherin was significantly higher in the presence of H. pylori than in the absence of infection (P=0.011). Moreover, the expression level of TCF4 and ${\beta}$-catenin protein was significantly higher in the nucleus and cytoplasm in H. pylori positive than in H. pylori negative GC patients, especially in those with the intestinal type (all P < 0.05). Conclusion: The expression of E-cadherin and ${\beta}$-catenin progressively decreases during the process of GC tumorigenesis, while overexpression of TCF4 occurs. H. pylori infection is associated with a significant increase in the expression of E-cadherin and ${\beta}$-catenin in the cytoplasm and nucleus in GC patients, especially those with the intestinal type.

Clitocybin A의 모유두 세포증식 효능 (Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells)

  • 강정일;김민경;유은숙;유익동;강희경
    • 생약학회지
    • /
    • 제45권4호
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun;Li, Shilun;Xue, Peng;Li, Yukun
    • Molecules and Cells
    • /
    • 제41권3호
    • /
    • pp.234-243
    • /
    • 2018
  • In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.

Cyclic tensile stress inhibits Wnt/${\beta}$-catenin signaling in human periodontal ligament cells

  • Kim, Ji-Young;Yang, Daum;Kim, Ha-Neui;Jung, Kyoung-Suk;Chang, Young-Il;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.53-59
    • /
    • 2009
  • Periodontal ligament (PDL) tissue is a connective tissue that is interposed between the roots of the teeth and the inner wall of the alveolar bone socket. PDL is always exposed to physiologic mechanical force such as masticatory force and PDL cells play important roles during orthodontic tooth movement by synthesizing and secreting different mediators involved in bone remodeling. The Wnt/${\beta}$-catenin signaling pathway was recently shown to play a significant role in the control of bone formation. In the present study, we applied cyclic tensile stress of 20% elongation to cultured human PDL cells and assessed its impact after six days upon components of the Wnt/${\beta}$-catenin signaling pathway. RTPCR analysis showed that Wnt1a, Wnt3a, Wnt10b and the Wnt receptor LRP5 were down-regulated, whereas the Wnt inhibitor DKK1 was up-regulated in response to these stress conditions. In contrast, little change was detected in the mRNA expression of Wnt5a, Wnt7b, Fz1, and LRP6. By western blotting we found decreased expression of the ${\beta}$-catenin and p-GSK-3${\beta}$ proteins. Our results thus show that mechanical stress suppresses the canonical Wnt/${\beta}$-catenin signaling pathway in PDL cells.

Effects of δ-Catenin on APP by Its Interaction with Presenilin-1

  • Dai, Weiye;Ryu, Taeyong;Kim, Hangun;Jin, Yun Hye;Cho, Young-Chang;Kim, Kwonseop
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. ${\beta}-Amyloid$ ($A{\beta}$) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that $A{\beta}$ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in $A{\beta}$ production, which initiates synaptic and neuronal damage. ${\delta}-Catenin$ is known to be bound to presenilin-1 (PS-1), which is the main component of the ${\gamma}-secretase$ complex that regulates APP cleavage. Because PS-1 interacts with both APP and ${\delta}-catenin$, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between ${\delta}-catenin$ and APP. However, we observed that ${\delta}-catenin$ could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, ${\delta}-catenin$ reduced PS-1-mediated stabilization of APP. The results suggest that ${\delta}-catenin$ can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • 제50권12호
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.