Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2340

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways  

Wu, Xuelun (Department of Endocrinology, The Third Hospital of Hebei Medical University)
Li, Shilun (Key Orthopaedic Biomechanics Laboratory of Hebei Province)
Xue, Peng (Department of Endocrinology, The Third Hospital of Hebei Medical University)
Li, Yukun (Department of Endocrinology, The Third Hospital of Hebei Medical University)
Abstract
In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.
Keywords
apoptosis; liraglutide; osteoblast; signaling pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, X., Li, S., Xue, P., and Li, Y. (2017). Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving beta-catenin. Exp. Cell Res. 360, 281-291.   DOI
2 Yamada, C., Yamada, Y., Tsukiyama, K., Yamada, K., Udagawa, N., Takahashi, N., Tanaka, K., Drucker, D.J., Seino, Y., and Inagaki, N. (2008). The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574-579.   DOI
3 Yavropoulou, M.P., and Yovos, J.G. (2013). Incretins and bone: evolving concepts in nutrient-dependent regulation of bone turnover. Hormones 12, 214-223.   DOI
4 Ying, Y., Zhu, H., Liang, Z., Ma, X., and Li, S. (2015). GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/bcatenin pathway. J. Mol. Endocrinol. 55, 245-262.   DOI
5 Zhao, X., Liu, G., Shen, H., Gao, B., Li, X., Fu, J., Zhou, J., and Ji, Q. (2015). Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells. Int. J. Mol. Med. 35, 684-692.   DOI
6 Miura, M., Chen, X.D., Allen, M.R., Bi, Y., Gronthos, S., Seo, B.M., Lakhani, S., Flavell, R.A., Feng, X.H., Robey, P.G., et al. (2004). A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest. 114, 1704-1713.   DOI
7 Nuche-Berenguer, B., Portal-Nunez, S., Moreno, P., Gonzalez, N., Acitores, A., Lopez-Herradon, A., Esbrit, P., Valverde, I., and Villanueva-Penacarrillo, M.L. (2010). Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMPlinked GLP-1 receptor. J. Cell. Physiol. 225, 585-592.   DOI
8 Papazafiropoulou, A., Papanas, N., Pappas, S., and Maltezos, E. (2014). Role of endogenous GLP-1 and its agonists in osteopenia and osteoporosis: but we little know until tried. Curr. Diabet. Rev. 10, 43-47.   DOI
9 Pacheco-Pantoja, E.L., Ranganath, L.R., Gallagher, J.A., Wilson, P.J., and Fraser, W.D. (2011). Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 11, 12.   DOI
10 Pallen, M.J., Puckey, L.H., and Wren, B.W. (1992). A rapid, simple method for detecting PCR failure. PCR Methods Appl. 2, 91-92.   DOI
11 Pereira, M., Jeyabalan, J., Jorgensen, C.S., Hopkinson, M., Al-Jazzar, A., Roux, J.P., Chavassieux, P., Orriss, I.R., Cleasby, M.E., and Chenu, C. (2015). Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone 81, 459-467.   DOI
12 Liu, X., Bruxvoort, K.J., Zylstra, C.R., Liu, J., Cichowski, R., Faugere, M.C., Bouxsein, M.L., Wan, C., Williams, B.O., and Clemens, T.L. (2007). Lifelong accumulation of bone in mice lacking Pten in osteoblasts. Proc. Natl. Acad. Sci. USA 104, 2259-2264.   DOI
13 Sanz, C., Vazquez, P., Blazquez, C., Barrio, P.A., Alvarez Mdel, M., and Blazquez, E. (2010). Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am. J. Physiol. Endocrinol. Metabol. 298, E634-643.   DOI
14 Liang, Q.H., Liu, Y., Wu, S.S., Cui, R.R., Yuan, L.Q., and Liao, E.Y. (2013). Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway. Toxicol. Appl. Pharmacol. 272, 591-597.   DOI
15 Liu, Z., and Habener, J.F. (2008). Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem. 283, 8723-8735.   DOI
16 Kim, W., and Egan, J.M. (2008). The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev. 60, 470-512.   DOI
17 Lu, N., Sun, H., Yu, J., Wang, X., Liu, D., Zhao, L., Sun, L., Zhao, H., Tao, B., and Liu, J. (2015). Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes. PloS one 10, e0132744.   DOI
18 Luo, G., Liu, H., and Lu, H. (2016). Glucagon-like peptide-1(GLP-1) receptor agonists: potential to reduce fracture risk in diabetic patients? Br J. Clin. Pharmacol. 81, 78-88.   DOI
19 Madsbad, S., Schmitz, O., Ranstam, J., Jakobsen, G., Matthews, D.R., and Group, N.N.I.S. (2004). Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care 27, 1335-1342.   DOI
20 Kimura, R., Okouchi, M., Fujioka, H., Ichiyanagi, A., Ryuge, F., Mizuno, T., Imaeda, K., Okayama, N., Kamiya, Y., Asai, K., et al. (2009). Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162, 1212-1219.   DOI
21 Gilbert, M.P., and Pratley, R.E. (2015). The impact of diabetes and diabetes medications on bone health. Endocrine Rev. 36, 194-213.   DOI
22 Henriksen, D.B., Alexandersen, P., Hartmann, B., Adrian, C.L., Byrjalsen, I., Bone, H.G., Holst, J.J., and Christiansen, C. (2007). Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40, 723-729.   DOI
23 Hock, J.M., Krishnan, V., Onyia, J.E., Bidwell, J.P., Milas, J., and Stanislaus, D. (2001). Osteoblast apoptosis and bone turnover. J. Bone Miner. Res. 16, 975-984.   DOI
24 Chen, X., Song, I.H., Dennis, J.E., and Greenfield, E.M. (2007). Endogenous PKI gamma limits the duration of the anti-apoptotic effects of PTH and beta-adrenergic agonists in osteoblasts. J. Bone Miner. Res. 22, 656-664.   DOI
25 Jeon, Y.K., Bae, M.J., Kim, J.I., Kim, J.H., Choi, S.J., Kwon, S.K., An, J.H., Kim, S.S., Kim, B.H., Kim, Y.K., et al. (2014). Expression of glucagon-like peptide 1 receptor during osteogenic differentiation of adipose-derived stem cells. Endocrinol. Metabol. 29, 567-573.   DOI
26 Jilka, R.L., Weinstein, R.S., Parfitt, A.M., and Manolagas, S.C. (2007). Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J. Bone Miner. Res. 22, 1492-1501.   DOI
27 Juhl, C.B., Hollingdal, M., Sturis, J., Jakobsen, G., Agerso, H., Veldhuis, J., Porksen, N., and Schmitz, O. (2002). Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reduces fasting and postprandial glycemia in type 2 diabetes. Diabetes 51, 424-429.   DOI
28 Bullock, B.P., Heller, R.S., and Habener, J.F. (1996). Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968-2978.   DOI
29 Challa, T.D., Beaton, N., Arnold, M., Rudofsky, G., Langhans, W., and Wolfrum, C. (2012). Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem. 287, 6421-6430.   DOI
30 Cho, Y.M., Fujita, Y., and Kieffer, T.J. (2014). Glucagon-like peptide-1: glucose homeostasis and beyond. Annu. Rev. Physiol. 76, 535-559.   DOI
31 Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 1192-1205.   DOI
32 Creutzfeldt, W. (1979). The incretin concept today. Diabetologia 16, 75-85.   DOI
33 Campbell, J.E., and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabol. 17, 819-837.   DOI
34 Kerr, J.F., Wyllie, A.H., and Currie, A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257.   DOI
35 Feng, Y., Su, L., Zhong, X., Guohong, W., Xiao, H., Li, Y., and Xiu, L. (2016). Exendin-4 promotes proliferation and differentiation of MC3T3-E1 osteoblasts by MAPKs activation. J. Mol. Endocrinol. 56, 189-199.   DOI
36 Ferguson, S.S. (2001). Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol. Rev. 53, 1-24.
37 Cunha, D.A., Ladriere, L., Ortis, F., Igoillo-Esteve, M., Gurzov, E.N., Lupi, R., Marchetti, P., Eizirik, D.L., and Cnop, M. (2009). Glucagonlike peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes 58, 2851-2862.   DOI
38 Deacon, C.F. (2004). Circulation and degradation of GIP and GLP-1. Hormone Metabol. Res. 36, 761-765.   DOI
39 Drucker, D.J. (2003). Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161-171.   DOI
40 Ono, T. (2014). Expression of glucagon-like peptide-1 receptor and glucosedependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J. Mol. Med. 34, 475-482.   DOI
41 Berlier, J.L., Kharroubi, I., Zhang, J., Dalla Valle, A., Rigutto, S., Mathieu, M., Gangji, V., and Rasschaert, J. (2015). Glucosedependent insulinotropic peptide prevents serum deprivationinduced apoptosis in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Stem Cell Rev. 11, 841-851.   DOI
42 Tsukiyama, K., Yamada, Y., Yamada, C., Harada, N., Kawasaki, Y., Ogura, M., Bessho, K., Li, M., Amizuka, N., Sato, M., et al. (2006). Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644-1651.   DOI
43 Bodine, P.V., and Komm, B.S. (2006). Wnt signaling and osteoblastogenesis. Rev. Endocrine Metabol. Dis. 7, 33-39.