DOI QR코드

DOI QR Code

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • Liu, Daocheng (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • He, Sihao (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • Yang, Lei (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • Bao, Quanwei (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • Qin, Hao (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University) ;
  • Liu, Huayu (Department of Trauma Surgery, Daping Hospital, Army Medical University) ;
  • Zhao, Yufeng (Department of Trauma Surgery, Daping Hospital, Army Medical University) ;
  • Zong, Zhaowen (State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University)
  • Received : 2018.04.30
  • Accepted : 2018.09.09
  • Published : 2018.12.30

Abstract

Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.

Keywords

References

  1. Weber, D. R., Haynes, K., Leonard, M. B., Willi, S. M. & Denburg, M. R. Type 1 diabetes is associated with an increased risk of fracture across the life span: a population-based cohort study using The Health Improvement Network (THIN). Diabetes Care 38, 1913-1920 (2015). https://doi.org/10.2337/dc15-0783
  2. Humphers, J. M., Shibuya, N., Fluhman, B. L. & Jupiter, D. The impact of glycosylated hemoglobin and diabetes mellitus on wound-healing complications and infection after foot and ankle surgery. J. Am. Podiatr. Med. Assoc. 104, 320-329 (2014). https://doi.org/10.7547/0003-0538-104.4.320
  3. Shibuya, N., Humphers, J. M., Fluhman, B. L. & Jupiter, D. C. Factors associated with nonunion, delayed union, and malunion in foot and ankle surgery in diabetic patients. J. Foot Ankle Surg. 52, 207-211 (2013). https://doi.org/10.1053/j.jfas.2012.11.012
  4. Dede, A. D., Tournis, S., Dontas, I. & Trovas, G. Type 2 diabetes mellitus and fracture risk. Metabolism 63, 1480-1490 (2014). https://doi.org/10.1016/j.metabol.2014.09.002
  5. Dogan, A. et al. A new hope for obesity management: boron inhibits adipogenesis in progenitor cells through the Wnt/beta-catenin pathway. Metabolism 69, 130-142 (2017). https://doi.org/10.1016/j.metabol.2017.01.021
  6. Tao, H., Yang, J. J., Shi, K. H. & Li, J. Wnt signaling pathway in cardiac fibrosis: new insights and directions. Metabolism 65, 30-40 (2016). https://doi.org/10.1016/j.metabol.2015.10.013
  7. Jin, T. The WNT signalling pathway and diabetes mellitus. Diabetologia 51, 1771-1780 (2008). https://doi.org/10.1007/s00125-008-1084-y
  8. Li, X. et al. Chemical and genetic evidence for the involvement of Wnt antagonist Dickkopf2 in regulation of glucose metabolism. Proc. Natl. Acad. Sci. USA 109, 11402-11407 (2012). https://doi.org/10.1073/pnas.1205015109
  9. Rulifson, I. C. et al. Wnt signaling regulates pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. USA 104, 6247-6252 (2007). https://doi.org/10.1073/pnas.0701509104
  10. Fujino, T. et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 100, 229-234 (2003). https://doi.org/10.1073/pnas.0133792100
  11. Hie, M., Iitsuka, N., Otsuka, T. & Tsukamoto, I. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int. J. Mol. Med. 28, 455-462 (2011).
  12. Hie, M., Yamazaki, M. & Tsukamoto, I. Curcumin suppresses increased bone resorption by inhibiting osteoclastogenesis in rats with streptozotocininduced diabetes. Eur. J. Pharmacol. 621, 1-9 (2009). https://doi.org/10.1016/j.ejphar.2009.08.025
  13. Reni, C., Mangialardi, G., Meloni, M. & Madeddu, P. Diabetes stimulates osteoclastogenesis by acidosis-induced activation of transient receptor potential cation channels. Sci. Rep. 6, 30639 (2016). https://doi.org/10.1038/srep30639
  14. Monroe, D. G., McGee-Lawrence, M. E., Oursler, M. J. & Westendorf, J. J. Update on Wnt signaling in bone cell biology and bone disease. Gene 492, 1-18 (2012). https://doi.org/10.1016/j.gene.2011.10.044
  15. Lopez-Herradon, A. et al. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells. J. Cell Biochem. 114, 1908-1916 (2013). https://doi.org/10.1002/jcb.24535
  16. Portal-Nunez, S. et al. Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormonerelated protein in bone from diabetic mice. FEBS Lett. 584, 3095-3100 (2010). https://doi.org/10.1016/j.febslet.2010.05.047
  17. Li, L. et al. Acceleration of bone regeneration by activating Wnt/beta-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis. Sci. Rep. 7, 45204 (2017). https://doi.org/10.1038/srep45204
  18. Yee, C. S. et al. Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model. Bone 82, 122-134 (2016). https://doi.org/10.1016/j.bone.2015.04.048
  19. Seeman, E. Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1218-1225 (2013). https://doi.org/10.1093/gerona/glt071
  20. Szabo, M. E., Zekonyte, J., Katsamenis, O. L., Taylor, M. & Thurner, P. J. Similar damage initiation but different failure behavior in trabecular and cortical bone tissue. J. Mech. Behav. Biomed. Mater. 4, 1787-1796 (2011). https://doi.org/10.1016/j.jmbbm.2011.05.036
  21. Weatherholt, A. M., Fuchs, R. K. & Warden, S. J. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Bone 52, 372-379 (2013). https://doi.org/10.1016/j.bone.2012.10.026
  22. Behrendt, A. K. et al. Dietary restriction-induced alterations in bone phenotype: effects of lifelong versus short-termcaloric restriction on femoral and vertebral bone in C57BL/6 mice. J. Bone Miner. Res. 31, 852-863 (2016). https://doi.org/10.1002/jbmr.2745
  23. Iwamoto, J., Sato, Y. & Matsumoto, H. Influence of gastrectomy on cortical and cancellous bones in rats. Gastroenterol. Res. Pract. 2013, 381616 (2013).
  24. Karim, L., Tang, S. Y., Sroga, G. E. & Vashishth, D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos. Int. 24, 2441-2447 (2013). https://doi.org/10.1007/s00198-013-2319-4
  25. Li, Z. et al. In vivo monitoring of bone architecture and remodeling after implant insertion: the different responses of cortical and trabecular bone. Bone 81, 468-477 (2015). https://doi.org/10.1016/j.bone.2015.08.017
  26. Tottrup, M. et al. Pharmacokinetics of cefuroxime in porcine cortical and cancellous bone determined by microdialysis. Antimicrob. Agents Chemother. 58, 3200-3205 (2014). https://doi.org/10.1128/AAC.02438-14
  27. Li, J. et al. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/beta-catenin signaling in mice. J. Orthop. Res. 35, 812-819 (2017). https://doi.org/10.1002/jor.23339
  28. Bennett, C. N. et al. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J. Bone Miner. Res. 22, 1924-1932 (2007). https://doi.org/10.1359/jbmr.070810
  29. Maeda, K. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18, 405-412 (2012). https://doi.org/10.1038/nm.2653
  30. Moverare-Skrtic, S. et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 20, 1279-1288 (2014). https://doi.org/10.1038/nm.3654
  31. Bao, Q. et al. An appropriate Wnt/beta-catenin expression level during the remodeling phase is required for improved bone fracture healing in mice. Sci. Rep. 7, 2695 (2017). https://doi.org/10.1038/s41598-017-02705-0
  32. Bao, Q. et al. Constitutive beta-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality. Exp. Cell Res. 350, 123-131 (2017). https://doi.org/10.1016/j.yexcr.2016.11.013
  33. Zhong, Z. A. et al. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone 81, 614-619 (2015). https://doi.org/10.1016/j.bone.2015.07.034
  34. Chen, S. et al. Adverse effects of osteocytic constitutive activation of ss-Catenin on bone strength and bone growth. J. Bone Miner. Res. 30, 1184-1194 (2015). https://doi.org/10.1002/jbmr.2453
  35. Bouxsein, M. L. et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468-1486 (2010). https://doi.org/10.1002/jbmr.141
  36. Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2-17 (2013). https://doi.org/10.1002/jbmr.1805
  37. Power, J. et al. Osteocyte lacunar occupancy in the femoral neck cortex: an association with cortical remodeling in hip fracture cases and controls. Calcif. Tissue Int. 69, 13-19 (2001). https://doi.org/10.1007/s00223-001-0013-6
  38. Mori, K. et al. Diabetic osteopenia by decreased beta-catenin signaling is partly induced by epigenetic derepression of sFRP-4 gene. PLoS ONE 9, e102797 (2014). https://doi.org/10.1371/journal.pone.0102797
  39. Krishnan, V., Bryant, H. U. & Macdougald, O. A. Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202-1209 (2006). https://doi.org/10.1172/JCI28551
  40. Borah, B. et al. Risedronate reduces intracortical porosity in women with osteoporosis. J. Bone Miner. Res. 25, 41-47 (2010). https://doi.org/10.1359/jbmr.090711
  41. Bui, M. et al. Architecture of cortical bone determines in part its remodelling and structural decay. Bone 55, 353-358 (2013). https://doi.org/10.1016/j.bone.2013.04.020
  42. Burr, D. B. Cortical bone: a target for fracture prevention? Lancet 375, 1672-1673 (2010). https://doi.org/10.1016/S0140-6736(10)60444-8
  43. Naruse, K. et al. Alendronate does not prevent long bone fragility in an inactive rat model. J. Bone Miner. Metab. 34, 615-626 (2016). https://doi.org/10.1007/s00774-015-0714-y
  44. Zebaze, R. M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729-1736 (2010). https://doi.org/10.1016/S0140-6736(10)60320-0
  45. Shanbhogue, V. V. et al. Bone beometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J. Bone Miner. Res. 30, 2188-2199 (2015). https://doi.org/10.1002/jbmr.2573
  46. Saha, M. T., Sievanen, H., Salo, M. K., Tulokas, S. & Saha, H. H. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos. Int. 20, 1401-1406 (2009). https://doi.org/10.1007/s00198-008-0810-0
  47. Verroken, C. et al. Cortical bone size eficit in adult patients with type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 102, 2887-2895 (2017). https://doi.org/10.1210/jc.2017-00620
  48. Graubert, M. D., Goldstein, S. & Phillips, L. S. Nutrition and somatomedin. XXVII. Total and free IGF-I and IGF binding proteins in rats with streptozocin-induced diabetes. Diabetes 40, 959-965 (1991). https://doi.org/10.2337/diab.40.8.959
  49. Romero, D. F. et al. Amylin increases bone volume but cannot ameliorate diabetic osteopenia. Calcif. Tissue Int. 56, 54-61 (1995). https://doi.org/10.1007/BF00298745
  50. Liang, J. & Slingerland, J. M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2, 339-345 (2003).
  51. Tsentidis, C. et al. Increased levels of Dickkopf-1 are indicative of Wnt/betacatenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos. Int. 28, 945-953 (2017). https://doi.org/10.1007/s00198-016-3802-5
  52. Schaffler, M. B. & Burr, D. B. Stiffness of compact bone: effects of porosity and density. J. Biomech. 21, 13-16 (1988). https://doi.org/10.1016/0021-9290(88)90186-8
  53. Yeni, Y. N., Brown, C. U., Wang, Z. & Norman, T. L. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21, 453-459 (1997). https://doi.org/10.1016/S8756-3282(97)00173-7
  54. Makras, P., Delaroudis, S. & Anastasilakis, A. D. Novel therapies for osteoporosis. Metabolism 64, 1199-1214 (2015). https://doi.org/10.1016/j.metabol.2015.07.011
  55. Kobayashi, Y. et al. Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochem. Biophys. Res. Commun. 463, 1278-1283 (2015). https://doi.org/10.1016/j.bbrc.2015.06.102
  56. Hamada, Y. et al. Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: a possible role of oxidative stress. Bone 40, 1408-1414 (2007). https://doi.org/10.1016/j.bone.2006.12.057
  57. Ogawa, N. et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm. Metab. Res. 39, 871-875 (2007). https://doi.org/10.1055/s-2007-991157
  58. Weinberg, E., Maymon, T., Moses, O. & Weinreb, M. Streptozotocin-induced diabetes in rats diminishes the size of the osteoprogenitor pool in bone marrow. Diabetes Res. Clin. Pract. 103, 35-41 (2014). https://doi.org/10.1016/j.diabres.2013.11.015
  59. Iyer, S. et al. Deletion of FoxO1, 3, and 4 in osteoblast progenitors attenuates the loss of cancellous bone mass in a mouse model of type 1 diabetes. J. Bone Miner. Res. 32, 60-69 (2017). https://doi.org/10.1002/jbmr.2934
  60. Iyer, S. et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J. Clin. Invest. 123, 3409-3419 (2013). https://doi.org/10.1172/JCI68049

Cited by

  1. Doxycycline restores the impaired osteogenic commitment of diabetic-derived bone marrow mesenchymal stromal cells by increasing the canonical WNT signaling vol.518, pp.None, 2018, https://doi.org/10.1016/j.mce.2020.110975
  2. β-Catenin mediates glucose-dependent insulinotropic polypeptide increases in lysyl oxidase expression in osteoblasts vol.14, pp.None, 2021, https://doi.org/10.1016/j.bonr.2021.101063
  3. Role of osteogenic Dickkopf-1 in bone remodeling and bone healing in mice with type I diabetes mellitus vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-81543-7
  4. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications vol.25, pp.14, 2018, https://doi.org/10.1111/jcmm.16663