• 제목/요약/키워드: beta closed set

검색결과 12건 처리시간 0.019초

OBTAINING WEAKER FORM OF CLOSED SETS IN TOPOLOGICAL SPACE USING PYTHON PROGRAM

  • Prabu, M. Vivek;Rahini, M.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제29권1호
    • /
    • pp.93-102
    • /
    • 2022
  • The impact of programming languages in the research sector has helped lot of researchers to broaden their view and extend their work without any limitation. More importantly, even the complex problems can be solved in no matter of time while converting them into a programming language. This convenience provides upper hand for the researchers as it places them in a comfort zone where they can work without much stress. With this context, we have converted the research problems in Topology into programming language with the help of Python. In this paper, we have developed a Python program to find the weaker form of closed sets namely alpha closed set, semi closed set, pre closed set, beta closed set and regular closed set.

DECOMPOSITION OF CONTINUITY AND COMPLETE CONTINUITY IN SMOOTH FUZZY TOPOLOGICAL SPACES

  • Amudhambigai, B.;Uma, M.K.;Roja, E.
    • East Asian mathematical journal
    • /
    • 제27권3호
    • /
    • pp.261-271
    • /
    • 2011
  • In this paper, fuzzy ${\alpha}^*$-set, fuzzy C-set, fuzzy AB-set, fuzzy t-set, fuzzy B-set, etc., are introduced in the sense of Sostak [12] and Ramadan [9]. By using these sets, a decomposition of fuzzy continuity and complete fuzzy continuity are provided. Characterization of smooth fuzzy extremally disconnected spaces is also obtained in this connection.

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

WEAK AND STRONG CONVERGENCE TO COMMON FIXED POINTS OF NON-SELF NONEXPANSIVE MAPPINGS

  • Su, Yongfu;Qin, Xiaolong
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.437-448
    • /
    • 2007
  • Suppose K is a nonempty closed convex nonexpansive retract of a real uniformly convex Banach space E with P as a nonexpansive retraction. Let $T_1,\;T_2\;and\;T_3\;:\;K{\rightarrow}E$ be nonexpansive mappings with nonempty common fixed points set. Let $\{\alpha_n\},\;\{\beta_n\},\;\{\gamma_n\},\;\{\alpha'_n\},\;\{\beta'_n\},\;\{\gamma'_n\},\;\{\alpha'_n\},\;\{\beta'_n\}\;and\;\{\gamma'_n\}$ be real sequences in [0, 1] such that ${\alpha}_n+{\beta}_n+{\gamma}_n={\alpha}'_n+{\beta'_n+\gamma}'_n={\alpha}'_n+{\beta}'_n+{\gamma}'_n=1$, starting from arbitrary $x_1{\in}K$, define the sequence $\{x_n\}$ by $$\{zn=P({\alpha}'_nT_1x_n+{\beta}'_nx_n+{\gamma}'_nw_n)\;yn=P({\alpha}'_nT_2z_n+{\beta}'_nx_n+{\gamma}'_nv_n)\;x_{n+1}=P({\alpha}_nT_3y_n+{\beta}_nx_n+{\gamma}_nu_n)$$ with the restrictions $\sum^\infty_{n=1}{\gamma}_n<\infty,\;\sum^\infty_{n=1}{\gamma}'_n<\infty,\; \sum^\infty_{n=1}{\gamma}'_n<\infty$. (i) If the dual $E^*$ of E has the Kadec-Klee property, then weak convergence of a $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is proved; (ii) If $T_1,\;T_2\;and\;T_3$ satisfy condition(A'), then strong convergence of $\{x_n\}$ to some $x^*{\in}F(T_1){\cap}{F}(T_2){\cap}(T_3)$ is obtained.

STRONG CONVERGENCE OF COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS

  • Gu, Feng
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.35-43
    • /
    • 2008
  • Let E be a uniformly convex Banach space and K be a nonempty closed convex subset of E. Let ${\{T_i\}}^N_{i=1}$ be N nonexpansive self-mappings of K with $F\;=\;{\cap}^N_{i=1}F(T_i)\;{\neq}\;{\theta}$ (here $F(T_i)$ denotes the set of fixed points of $T_i$). Suppose that one of the mappings in ${\{T_i\}}^N_{i=1}$ is semi-compact. Let $\{{\alpha}_n\}\;{\subset}\;[{\delta},\;1-{\delta}]$ for some ${\delta}\;{\in}\;(0,\;1)$ and $\{{\beta}_n\}\;{\subset}\;[\tau,\;1]$ for some ${\tau}\;{\in}\;(0,\;1]$. For arbitrary $x_0\;{\in}\;K$, let the sequence {$x_n$} be defined iteratively by $\{{x_n\;=\;{\alpha}_nx_{n-1}\;+\;(1-{\alpha}_n)T_ny_n,\;\;\;\;\;\;\;\;\; \atop {y_n\;=\;{\beta}nx_{n-1}\;+\;(1-{\beta}_n)T_nx_n},\;{\forall}_n{\geq}1,}$, where $T_n\;=\;T_{n(modN)}$. Then {$x_n$} convergence strongly to a common fixed point of the mappings family ${\{T_i\}}^N_{i=1}$. The result presented in this paper generalized and improve the corresponding results of Chidume and Shahzad [C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(2005), 1149-1156] even in the case of ${\beta}_n\;{\equiv}\;1$ or N=1 are also new.

  • PDF

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS

  • Taskara, Necati;Tollu, Durhasan T.;Touafek, Nouressadat;Yazlik, Yasin
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.301-319
    • /
    • 2020
  • In this paper, we show that the system of difference equations $x_n={\frac{ay^p_{n-1}+b(x_{n-2}y_{n-1})^{p-1}}{cy_{n-1}+dx^{p-1}_{n-2}}}$, $y_n={\frac{{\alpha}x^p_{n-1}+{\beta}(y_{n-2}x_{n-1})^{p-1}}{{\gamma}x_{n-1}+{\delta}y^{p-1}_{n-2}}}$, n ∈ ℕ0 where the parameters a, b, c, d, α, β, γ, δ, p and the initial values x-2, x-1, y-2, y-1 are real numbers, can be solved. Also, by using obtained formulas, we study the asymptotic behaviour of well-defined solutions of aforementioned system and describe the forbidden set of the initial values. Our obtained results significantly extend and develop some recent results in the literature.

STRONG CONVERGENCE OF COMPOSITE ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS

  • Jung, Jong-Soo
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1151-1164
    • /
    • 2009
  • Let E be a reflexive Banach space with a weakly sequentially continuous duality mapping, C be a nonempty closed convex subset of E, f : C $\rightarrow$C a contractive mapping (or a weakly contractive mapping), and T : C $\rightarrow$ C a nonexpansive mapping with the fixed point set F(T) ${\neq}{\emptyset}$. Let {$x_n$} be generated by a new composite iterative scheme: $y_n={\lambda}_nf(x_n)+(1-{\lambda}_n)Tx_n$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, ($n{\geq}0$). It is proved that {$x_n$} converges strongly to a point in F(T), which is a solution of certain variational inequality provided the sequence {$\lambda_n$} $\subset$ (0, 1) satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n$ = 0 and $\sum_{n=0}^{\infty}{\lambda}_n={\infty}$, {$\beta_n$} $\subset$ [0, a) for some 0 < a < 1 and the sequence {$x_n$} is asymptotically regular.

Characterization of Function Rings Between C*(X) and C(X)

  • De, Dibyendu;Acharyya, Sudip Kumar
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.503-507
    • /
    • 2006
  • Let X be a Tychonoff space and ${\sum}(X)$ the set of all the subrings of C(X) that contain $C^*(X)$. For any A(X) in ${\sum}(X)$ suppose $_{{\upsilon}A}X$ is the largest subspace of ${\beta}X$ containing X to which each function in A(X) can be extended continuously. Let us write A(X) ~ B(X) if and only if $_{{\upsilon}A}X=_{{\upsilon}B}X$, thereby defining an equivalence relation on ${\sum}(X)$. We have shown that an A(X) in ${\sum}(X)$ is isomorphic to C(Y ) for some space Y if and only if A(X) is the largest member of its equivalence class if and only if there exists a subspace T of ${\beta}X$ with the property that A(X)={$f{\in}C(X):f^*(p)$ is real for each $p$ in T}, $f^*$ being the unique continuous extension of $f$ in C(X) from ${\beta}X$ to $\mathbb{R}^*$, the one point compactification of $\mathbb{R}$. As a consequence it follows that if X is a realcompact space in which every $C^*$-embedded subset is closed, then C(X) is never isomorphic to any A(X) in ${\sum}(X)$ without being equal to it.

  • PDF