• 제목/요약/키워드: benzyladenine

검색결과 120건 처리시간 0.027초

Comparison of Adventitious Shoot Formation in Petiole Explant Cultures of 20 Cultivars of Catharanthus roseus

  • Lee, Soo-Young;Park, Pil-Son;Chung, Hwa-Jee;In, Dong-Soo;Park, Dong-Woog;Jang R. Liu
    • Journal of Plant Biotechnology
    • /
    • 제5권1호
    • /
    • pp.59-61
    • /
    • 2003
  • Petiole explants from 20 cultivars of Catharanthus roseus were cultured on various shoot-inducing media to assess their competence for adventitious shoot formation. After eight weeks of culture on Murashige and Skoog' s medium supplemented with 4.4 $\mu\textrm{m}$6-benzyladenine and 0.5 $\mu\textrm{m}$ $\alpha$-naphthaleneacetic acid, petiole explants from 'Cooler Icy Pink' exhibited the greatest frequency of adventitious shoot formation at 40%, which was followed by 'Little Bright Eye'. By comparing with a previous study on assessment of competence for adventitious shoot formation in hypocotyl explant cultures of various cultures, it is indicated that the relative degree of their competence among cultivars varies to the organ used for the source of explant. Excised adventitious shoots were readily rooted on half-strength MS basal medium. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

Shoot Organogenesis and Plantlet Regeneration from Stem Explants of Cleome rosea Vahl (Capparaceae)

  • Claudia Simoes;Alessandra S. Santos;Norma Albarello;Solange Faria Lua Figueiredo
    • Journal of Plant Biotechnology
    • /
    • 제6권3호
    • /
    • pp.199-204
    • /
    • 2004
  • The medicinal value of the genus Cleome justifies bio-technological studies of Cleome rosea, a Brazilian annual species from sandy coastal ecosystems (restinga), which have been submitted to an intense process of antropogenic degradation. In the present work, was analyzed the influence of cytokinins, 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin) added to the Murashige and Skoog medium (MS), on the proliferation capacity of explants from the stem axis (hypocotyl, node and internode) for a period of five monthly subcultures (150 days). Regardless of the explant sources, plantlet regeneration by direct and indirect organogenesis was observed. The largest number of shoots proliferated through direct organogenesis was obtained on medium with 4.4 $\mu{M}$ BA. Also, the highest proliferation capacity through indirect organogenesis was found on medium with 4.4 $\mu{M}$ BA + 4.6 $\mu{M}$ kinetin. The presence of kinetin alone was not effective for multiplication of the species. Elongation and rooting were obtained when shoots were transferred onto growth regulator-free medium, and acclimatization rates from 70% to 81% were achieved depending on explant sources used. Plants were then successfully established in soil and showed normal phenotypes.

Plant regeneration from the root-derived embryonic tissues of Rosa hybrida L. cv. Charming via a combined pathway of somatic embryogenesis and organogenesis

  • Kim, Suk Weon;Oh, Myung Jin;Liu, Jang R.
    • Plant Biotechnology Reports
    • /
    • 제3권4호
    • /
    • pp.341-345
    • /
    • 2009
  • This study describes culture conditions for a plant regeneration system via a combined pathway of somatic embryogenesis and organogenesis in root explant cultures of the commercial rose cultivar 'Charming'. Root explants formed white calluses at a frequency of 30% after 6 weeks of culture on Schenk and Hildebrandt (SH) medium supplemented with $11mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid. After 6 weeks of transfer to SH medium without growth regulators, initial white calluses gave rise to globular somatic embryos at a frequency of 2.8%, which were subsequently dedifferentiated to embryonic tissues. Somatic embryos or embryonic tissues initially derived from root explants did not undergo development beyond cotyledonary stage. To produce adventitious shoots, embryonic tissues were sliced and cultured on SH medium with $0.5mg\;1^{-1}$ 6-benzyladenine. After 4 weeks of culture, 28% of embryonic tissue explants formed adventitious shoots. Regenerated shoots were rooted on half strength SH medium with $0.1mg\;1^{-1}$ ${\alpha}-naphthalaneacetic$ acid and subsequently grown to maturity. Root-derived embryonic tissues were proliferated by subculture, while retaining the capacity for shoot production for a few years.

번행초의 잎 절편으로부터 신초의 재분화 (Shoot Regeneration from the Leaf Explants of Tetragonia tetragonoides $O.\;K_{UNTZE}$)

  • 황성진;표병식;황백
    • 한국약용작물학회지
    • /
    • 제10권2호
    • /
    • pp.116-119
    • /
    • 2002
  • 번행초(Tetragonia tetragonoides)의 잎 절편으로부터 기내(in vitro) 증식을 유도 하였다. 2 mg/L BA와 0.5 mg/L NAA가 조합 처리된 MS 기본배지에서 잎 절편으로부터 직접 기관형성 과정을 통하여 부정아가 형성 되었다. 유기한 부정아는 절취하여 2 mg/L NAA와 0.5 mg/L BA이 첨가된 MS배지로 옮겨 유묘의 대량 증식을 시도하였으며, 배양 3주 후 신초의 지속적인 성장을 위해 무기염의 농도가 두배로 증가된 2MS배지로 옮겨 배양 하였다. 증식된 신초로부터 발근은 식물성장조절물질이 첨가되지 않은 1/2MS와 MS배지 모두에서 이루어 졌다.

High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L.

  • Koo, Ja Choon
    • 원예과학기술지
    • /
    • 제32권5호
    • /
    • pp.694-701
    • /
    • 2014
  • Allium hookeri L. (Alliaceae family) is an important ethnomedicinal plant native to the Himalayan region of Asia. The aim of this research was to establish a high-frequency plant regeneration system for in vitro propagation of A. hookeri. Among the tissue types examined, receptacle explants derived from immature flower buds showed the highest regeneration rate of shoots ($93.33{\pm}4.63%$), roots ($76.67{\pm}7.85%$), and calli ($80.00{\pm}7.43%$) when cultured on Gamborg B5 (B5) medium containing $10{\mu}M$ 6-benzylaminopurine (BA) + $1{\mu}M$ naphthalene acetic acid (NAA), $0.5{\mu}M$ BA + $5{\mu}M$ NAA, and $1{\mu}M$ BA + $10{\mu}M$ NAA, respectively. Shoot multiplication was superior when cultured in liquid rather than on solid medium and relatively high concentrations of BA, ranging from 5 to $10{\mu}M$. Efficient bulblet formation following root induction from shoot clumps was achieved with culture in liquid B5 medium containing 7% (w/v) sucrose. Regenerated bulblets were successfully acclimatized to ex vitro conditions with a greater than 95% survival rate. By this method, a maximum of 62 plantlets per receptacle could be propagated within 9 weeks of initial culture. The in vitro propagation system established in this study will promote A. hookeri biotechnology, including large-scale production of healthy and aseptic clones, preserving parental genotypes with desirable traits, and genetic manipulation to enhance medicinal value.

Influence of formulated organic Plant tissue culture medium in the shoot regeneration study of Brassica juncea (l.) - Indian mustard

  • Kashyap, Suman;Tharannum, Seema;R, Taarini
    • Journal of Plant Biotechnology
    • /
    • 제46권2호
    • /
    • pp.114-118
    • /
    • 2019
  • Efficient protocol for plant shoot regeneration of Brassica juncea L. CZERN was established by using organic media components and growth stimulating factors of the vermicompost and coelomic fluids. Formulated organic plant tissue culture media (Vermicompost (30%) extracts supplemented with 20 mL/L coelomic fluid) have shown maximum shoot regeneration when compared with the Murashige and Skoog (MS) medium, which were supplemented with 1 mg/L 6-benzyladenine (BA) and 0.1 mg/L of Naphthaleneacetic acid (NAA). Cotyledon explants produced the highest shoot regeneration frequency from fourday-old germinated seedlings in comparison with non-germinated seedlings. The vermicompost extracts have proved to be the best organic plant growth media to induce shoots from cotyledons compared to the MS media. Statistically significant difference (P = 0.008) for the root length, shoot length (P=0.000350) and the leaves (P=0.375) of the mustard plantlets were analyzed successfully. The survival rate was 98% in the mustard cotyledons on the Vermicompost extract media and 63% on MS media respectively. The coelomic fluid also is much suitable to induce shoots from cotyledons at lower concentrations. It was also shown that the vermicompost extract, which comprised of humic acids along with coelomic fluid, affected shoot regeneration from the cotyledons. An efficient and organic shoot regeneration study was standardized and it can be applicable in the improvement of the economically important crops.

In vitro Root Induction from Shoot Explants of Pear (Pyrus spp.)

  • Jae-Young Song;Jinjoo Bae;Woohyung Lee;Jung-Ro Lee;Mun-Sup Yoon
    • 한국자원식물학회지
    • /
    • 제35권6호
    • /
    • pp.770-777
    • /
    • 2022
  • The main objective of this study was to identify the most appropriate condition for root formation of in vitro micropropagated pear (Pyrus spp.) plants. In vitro propagation was induced on Murashige and Skoog (MS) medium with 2.0 mg/L of N6-benzyladenine (BA) and 0.2 mg/L of Indole-3-butyric acid (IBA) medium. The short pre-treatment of explants with a high concentration (1 mg/L) of NAA and IBA (R0 medium) in dark for three days, followed by transfer to five different media (R1 to R5) resulted in good rooting responses in the pear 'Oharabani (P. pyrifolia × P. communis)' genotype. For the rooting experiments, the highest rooting percentage (83.3 ± 8.3%), average root length (3.6 ± 1.9 mm), total root number (31 ± 4.0), and average root number per plant (2.6 ± 2.1) were obtained on half strength (1/2) of MS medium supplemented with 30 g/L sucrose without hormones and activated charcoal (AC) (R1 medium). The highest rooting percentage was obtained at 83.3% from explants on R1 and R3 media. The rooting procedure described in this study resulted in good root formation and significantly shorting the root induction time to within 14 days of culture. Further studies are underway to test the suitability of the protocol developed in this study for other pear genotypes.

The Factors on Somatic Embryogenesis of Soybean [Glycine max. (L.) Merrill]

  • Kim, Kyong-Ho;Kim, Hag-Sin;Oh, Young-Jin;Suh, Sug-Kee;Kim, Tae-Soo;Park, Ho-Kee;Park, Moon-Soo;Kim, Seok-Dong;Yeo, Up-Dong
    • Journal of Plant Biotechnology
    • /
    • 제2권3호
    • /
    • pp.123-128
    • /
    • 2000
  • To enhance in vitro plantlet regeneration efficiency of soybean through embryogenesis, the culture conditions such as material part and size of immature seed, 2,4-D, pH and solidifying agents for somatic embryogenesis were investigated. Somatic embryogenesis was induced from the immature embryo, immature cotyledon and embryonic axis explants of the immature seed on MS medium supplemented with 2.0 mg/L 2,4-D. The highest rate (up to 22.9%) of somatic embryogenesis was obtained from the immature cotyledon, following embryonic axis and the immature embryo. The rate varied with the developmental stages of seed. The maximum rate (25.4%) of embryogenesis was obtained from 3-4 mm length of the seed (after 25 days of flowering). The optimum concentration of 2,4-D for embryogenesis was 10 mg/L. The optimum pH was at 5.8 and solidifying agent for medium was better with 0.4% gelrite than with agar. For rapid multiplication of shoot tips from the germinating somatic embryos, they were cultured on MS medium containing 2 mg/L indole-3-butyyic acid (IBA) and 1 mg/L 6-benzyladenine (BA). After then somatic embryos with one and three cotyledons were transferred to the growth regulator free medium. The medium exhibited the higher rate (ca. 50%) of development than the multiplication medium.

  • PDF

Plant regeneration via direct and indirect adventitious shoot formation and chromosome-doubled somaclonal variation in Titanotrichum oldhamii (Hemsl.) Solereder

  • Takagi, Hiroki;Sugawara, Shintaro;Saito, Tomoka;Tasaki, Haruka;Yuanxue, Lu;Kaiyun, Guan;Han, Dong-Sheng;Godo, Toshinari;Nakano, Masaru
    • Plant Biotechnology Reports
    • /
    • 제5권2호
    • /
    • pp.187-195
    • /
    • 2011
  • The gesneriaceous perennial plant Titanotrichum oldhamii has beautiful foliage and attractive bright yellow flowers. However, breeding of T. oldhamii by conventional sexual hybridization may be difficult because sexual reproduction of this species is very rare. In the present study, plant regeneration systems via both direct and indirect formation of adventitious shoots from leaf explants were established as the first step toward breeding T. oldhamii by using biotechnological techniques. Adventitious shoots were formed efficiently on medium containing $0.1mg\;l^{-1}$ benzyladenine. Histological observation showed that shoot formation on this medium occurred directly from leaf epidermal cells without callus formation. On the other hand, leaf explants formed calluses on medium containing $0.1mg\;l^{-1}$ 2,4-dichlorophenoxyacetic acid. The calluses could be maintained by monthly subculturing to fresh medium of the same composition. When the calluses were transferred to plant growth regulator-free medium, they formed adventitious shoots. Directly and indirectly formed shoots rooted well on medium containing $0.1mg\;l^{-1}$ indole-3-butyric acid. Plantlets thus obtained were successfully acclimatized and grew vigorously in the greenhouse. Flow cytometry analysis indicated that no variation in the ploidy level was observed in plants regenerated via direct shoot formation, whereas chromosome doubling occurred in several plants regenerated via indirect shoot formation. Regenerated plants with the same ploidy level as the mother plants showed almost the same phenotype as the mother plants, whereas chromosome-doubled plants showed apparent morphological alterations: they had small and crispate flowers, and round and deep green leaves.

Plantlet Regeneration via Somatic Embryogenesis from Hypocotyls of Common Buckwheat (Fagopyrum esculentum Moench.)

  • Kwon, Soo-Jeong;Han, Myong-Hae;Huh, Yoon-Sun;Roy, Swapan Kumar;Lee, Chul-Won;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제58권4호
    • /
    • pp.331-335
    • /
    • 2013
  • Buckwheat sprout is used as vegetable, and also flour for making noodles, and so on. Currently, information about tissue culture in buckwheat is limited and restricted to micro-propagation. We carried out somatic embryogenesis and plant regeneration using hypocotyl segments as explant of the cultivated buckwheat species, Fagopyrum esculentum which differs from existing studies in the growth regulator combinations used. Maximum callus regeneration was induced on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) $2.0mg{\cdot}L^{-1}$, benzyladenine (BA) $1.0mg{\cdot}L^{-1}$ and 3% sucrose. Friable callus was transferred to solidified MS media containing BA ($1.0mg{\cdot}L^{-1}$) with various concentrations of 2,4-dichlorophenoxyacetic acid for the induction of embryogenesis. The optimum concentrations of growth regulators (for regeneration of plantlet) were indole-3-acetic acid ($2.0mg{\cdot}L^{-1}$), Kinetin ($1.0mg{\cdot}L^{-1}$), BA ($1.0mg{\cdot}L^{-1}$). Only 2,4-D did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 5% to 20%. Whole plants were obtained at high frequencies when the embryogenic calli with somatic embryos and organized shoot primordia were transferred to MS media with 3% sucrose. The main objective of this research was to develop an efficient protocol for plant regeneration for common buckwheat, and to apply in future for genetic transformation.