Browse > Article
http://dx.doi.org/10.7235/hort.2014.14023

High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L.  

Koo, Ja Choon (Division of Science Education and Institute of Fusion Science, Chonbuk National University)
Publication Information
Horticultural Science & Technology / v.32, no.5, 2014 , pp. 694-701 More about this Journal
Abstract
Allium hookeri L. (Alliaceae family) is an important ethnomedicinal plant native to the Himalayan region of Asia. The aim of this research was to establish a high-frequency plant regeneration system for in vitro propagation of A. hookeri. Among the tissue types examined, receptacle explants derived from immature flower buds showed the highest regeneration rate of shoots ($93.33{\pm}4.63%$), roots ($76.67{\pm}7.85%$), and calli ($80.00{\pm}7.43%$) when cultured on Gamborg B5 (B5) medium containing $10{\mu}M$ 6-benzylaminopurine (BA) + $1{\mu}M$ naphthalene acetic acid (NAA), $0.5{\mu}M$ BA + $5{\mu}M$ NAA, and $1{\mu}M$ BA + $10{\mu}M$ NAA, respectively. Shoot multiplication was superior when cultured in liquid rather than on solid medium and relatively high concentrations of BA, ranging from 5 to $10{\mu}M$. Efficient bulblet formation following root induction from shoot clumps was achieved with culture in liquid B5 medium containing 7% (w/v) sucrose. Regenerated bulblets were successfully acclimatized to ex vitro conditions with a greater than 95% survival rate. By this method, a maximum of 62 plantlets per receptacle could be propagated within 9 weeks of initial culture. The in vitro propagation system established in this study will promote A. hookeri biotechnology, including large-scale production of healthy and aseptic clones, preserving parental genotypes with desirable traits, and genetic manipulation to enhance medicinal value.
Keywords
1-naphthalene acetic acid (NAA); 6-benzyladenine (BA); Allium hookeri; micropropagation; receptacle;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Rauber, M. and J. Grunewaldt. 1988. In vitro regeneration in Allium species. Plant Cell Rep. 7:426-429.
2 Pandey, A., R. Pandey, K.S. Negi, and J. Radhamani. 2008. Realizing value of genetic resources of Allium in India. Genet. Resour. Crop Ev. 55:985-994.   DOI
3 Pandey, R., K.P. Chandel, and S.R Rao. 1992. In vitro propagation of Allium tuberosum Rottl. ex. Spreng. by shoot proliferation. Plant Cell Rep. 11:375-378.
4 Rahman, K. and G.M. Lowe. 2006. Garlic and cardiovascular disease: A critical review. J. Nutr. 136:736S-740S.
5 Rhyu, D.Y. and S.H. Park. 2013. Characterization of alkyl thiosulfinate in Allium hookeri root using HPLC-ESI-MS. J. Korean Soc. Appl. Biol. Chem. 56:457-459.   과학기술학회마을   DOI
6 Robledo-Paz, A., V.M. Villalobos-Arambula, and A.E. Jofre-Garfias. 2000. Efficient plant regeneration of garlic (Allium sativum L.) by root-tip culture. In Vitro Cell Dev. Biol. Plant 36:416-419.   DOI   ScienceOn
7 Seidemann, J. 2005. World spice plants: Economic usage, botany, taxonomy. Springer-Verlag, Berlin.
8 Sharma, G., R.N. Gohil, and V. Kaul. 2011. Cytological status of Allium hookeri Thwaites (2n = 22). Genet. Resour. Crop Evol. 58:1041-1050.   DOI
9 Silvertand, B., E. Jacobsen, J. Mazereeuw, P. Lavrijsen, and A. van Harten. 1995. Efficient in vitro regeneration of leek (Allium ampeloprasum L.) via flower stalk segments. Plant Cell Rep. 14:423-427.   DOI
10 Wawrosch, C., P.R. Malla, and B. Kopp. 2001. Micropropagation of Allium wallichii Kunth, a threatened medicinal plant of Nepal. In Vitro Cell Dev. Biol. Plant 37:555-557.   DOI
11 Abo El-Nil, M.M. 1977. Organogenesis and embryogenesis in callus cultures of garlic (Allium sativum L.). Plant Sci. Lett. 9:259-264.   DOI   ScienceOn
12 Ayam, V.S. 2011. Allium Hookeri, Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. AJFAND 11:5389-5412.
13 Bhojwanii, S.S. 1980. In vitro production of garlic by shoot proliferation. Sci. Hortic. 13:47-52.   DOI   ScienceOn
14 Dunstan, D.I. and K.C. Short. 1977. Shoot production from the flower head of Allium cepa L. Sci. Hort. 10:345-356.
15 Haque, M.S., T. Wada, and K. Hattori. 1997. High frequency shoot regeneration and plantlet formation from root tip of garlic. Plant Cell Tissue Organ Cult. 50:83-89.   DOI   ScienceOn
16 Won, J.Y., Y.C. Yoo, E.J. Kang, H. Yang, G.H. Kim, B.J. Seong, S.I. Kim, S.H. Han, S.S. Lee, and K.S. Lee. 2013. Chemical components, DPPH radical scavenging activity and inhibitory effects on nitric oxide production in Allium hookeri cultivated under open field and greenhouse conditions. J. Korean Soc. Food Sci. Nutr. 42:1351-1356.   과학기술학회마을   DOI   ScienceOn
17 Haque, M.S., T. Wada, and K. Hattori. 1998. Novel method of rapid micropropagation using cyclic bulblet formation from root tip explants in garlic. Breeding Sci. 48:293-299.
18 Escalona, M., J.C. Lorenzo, B. Gonzalez, M. Daquinta, J.L. Gonzalez, Y. Desjardin, and C.G. Borrota. 1999. Pineapple (Ananas comosus L. Merr.) micropropagation in temporary immersion systems. Plant Cell Rep. 18:743-748.   DOI   ScienceOn
19 Gamborg, O.L., R.A. Miller, and O. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cell. Exp. Cell Res. 50:151-158.   DOI   ScienceOn
20 Gantait, S., N. Mandal, and P.K. Das. 2010. An Overview on in vitro Culture of Genus Allium. Am. J. Plant Physiol. 5:325-337.   DOI
21 Ilan, A., M. ZIiv, and A.H. Halevy. 1995. Propagation and corm development of Brodiaea in liquid cultures. Sci. Hort. 63:101-112.   DOI
22 Jha, T.B. and S. Jha. 1989. In vitro regeneration and cytological study of Allium hookeri thw. Indian J. Exp. Biol. 27:363-365.
23 Kala, C.P. 2005. Ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India. J. Ethnobiol. Ethnomed. 1:1-8.   DOI   ScienceOn
24 Kahane, R., M. Rancillac, and B.T. de la Serve. 1992. Long-term multiplication of onion (Allium cepa L.) by cyclic shoot regeneration in vitro. Plant Cell Tissue Organ Cult. 28:281-288.   DOI
25 Kim, C.H., M.A. Lee, T.W. Kim, J.Y. Jang, and H.J. Kim. 2012. Anti-inflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264.7 cells. J. Korean Soc. Food Sci. Nutr. 41:1645-1648.   과학기술학회마을   DOI   ScienceOn
26 Linsmaier, E.M. and F. Skoog. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 18:100-127.   DOI
27 Ma, Y., H. Wang, C. Zhang, and Y. Kang. 1994. High rate of virus-free plantlet regeneration via garlic scape-tip culture. Plant Cell Rep. 14:65-68.
28 Kim, E.K., E.J. Hahn, H.N. Murthy, and K.Y. Paek. 2003. High frequency of shoot multiplication and bulblet formation of garlic in liquid cultures. Plant Cell Tissue Organ Cult. 73: 231-236.   DOI   ScienceOn
29 Lee, S.Y., H.H. Kim, Y.K. Kim, N.I. Park, and S.U. Park. 2009. Plant regeneration of garlic (Allium sativum L.) via somatic embryogenesis. Sci. Res. Essays 4:1569-1574.
30 Matsubara, S. and H. Hihara. 1978. Onion bulblet regeneration on receptacles in vivo and in vitro. J. Japan Soc. Hort. Sci. 46:479-486.   DOI
31 Mohamed-Yasseen, Y., W.E. Splittstoesser, and R.E. Litz. 1994. In vitro shoot poliferation and production of sets from garlic and shallot. Plant Cell Tissue Organ Cult. 36:243-248.   DOI
32 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473-497.   DOI
33 Myers, J.M. and P.W. Simon. 1999. Regeneration of garlic callus as affected by clonal variation, plant growth regulators and culture conditions over time. Plant Cell Rep. 19:32-36.   DOI   ScienceOn
34 Nagakubo, T., A. Nagasawa, and H. Ohkawa. 1993. Micropropagation of garlic through in vitro bulblet formation. Plant Cell Tissue Organ Cult. 32:175-183.   DOI
35 Novak, F.J. and L. Havel. 1981. Shoot production from in vitro cultured flower heads of Allium porrum L. Biol. Plant. 23: 266-269.   DOI
36 Novak, F.J. 1990 Allium tissue culture, p. 233-250. In: H.D. Rabinowitch and J.L. Brewster (eds.). Onions and allied crops. CRC press, Boca Raton.
37 Bae, G.C. and D.Y. Bae. 2012. The anti-inflammatory effects of ethanol extract of Allium hookeri cultivated in South Korea. Kor. J. Herbology 27:55-61.   과학기술학회마을   DOI   ScienceOn