• Title/Summary/Keyword: beer fermentation

Search Result 41, Processing Time 0.031 seconds

Analysis of purine content in beer according to fermentation temperature (발효 온도에 따른 맥주의 퓨린 함량 분석)

  • Kwak, Hee-Jae;Kim, Soo-Kyoung;Lee, Byung-Seop;Li, Xi-Hui;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.379-383
    • /
    • 2018
  • Beer is the most popular alcoholic fermentation product, but its high purine content has been known to be associated with hyperuricemia and gout. In this study, we examined whether the purine content of beer could be lowered by changing the fermentation temperature during beer-brewing. We brewed beers at different temperatures, $10^{\circ}C$ and $20^{\circ}C$, that are two typical beer-brewing conditions for bottom- and top-fermentation, respectively, and the contents of the representative purines, adenine, guanine, and xanthine in each beer were measured by high performance liquid chromatography. As a result, the total purine content of the beer fermented at $10^{\circ}C$ was lower than that of fermented beer at $20^{\circ}C$. Especially, the content of adenine was lowered significantly.

Production of Bacterial Cellulose Using Waste of Beer Fermentation Broth (맥주발효 폐액을 이용한 미생물 셀룰로오스 생산)

  • Park, Joog Kon;Hyun, Seung Hoon;Ahn, Won Sool
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Bacterial cellulose (BC) was produced by Gluconacetobacter hansenii PJK (KCTC 10505 BP) strains using the waste of beer fermentation broth. It contained more C and N than a basal medium with a small amount of S and more than 4% ethanol. The amount of BC produced in a shaking culture using the waste of beer fermentation broth was nearly the same as that of a basal medium. The production of BC decreased in a shear stress field in a jar fermenter although the conversion of cellulose producing ($Cel^+$) cells to non-cellulose producing ($Cel^-$) mutants was not severe. This study showed that the waste of beer fermentation broth is an inexpensive carbon, nitrogen source with ethanol and thus a worthy substitute for the conventional medium for BC production.

Influence of Aeration During Propagation of Pitching Yeast on Fermentation and Beer Flavor

  • Cheong, Chul;Wackerbauer, Karl;Kang, Soon-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.297-304
    • /
    • 2007
  • The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 hand 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.

Double-stage Batch Fermentation of Beer I. Theoretical Background (이단회분식 맥주발효 I. 이론)

  • Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.1
    • /
    • pp.31-34
    • /
    • 1975
  • Fermentation models of beer having higher efficiencies with a minimum change in conventional batch fermentation condition have been designed. By diluting the fermenting mass with one half or one third volume of fresh wort after three days of the conventional batch fermentation and completing the rest of the fermentation in five or four days, about 20 to 30 percent increase in the fermentation efficiency over the regular 9-day batch beer fermentation is theoretically feasible.

  • PDF

The Effect of Green Tea Extracts on the Fermentation Properties of Polyphenol-Enriched Beers (녹차 추출물을 첨가한 polyphenol 강화 맥주의 발효 특성에 대한 연구)

  • Yom, Heng-Cherl
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.3
    • /
    • pp.49-55
    • /
    • 2008
  • The purpose of this study was to investigate the effects of green tea extracts (GTE) on the fermentation properties of polyphenol-enriched beers. As such, the formation patterns of tannoid in beer with GTE were investigated at 3 different infusion times, while the ale and the lager beers fortified with GTE were analyze to ascertain effects on gravity, pH, yeast viability, total polyphenol, and tannoid during fermentation period. The results were as follows: 1) The formation of tannoid in beer with GTE in the tannometer; In reaction of GTE with polyvinylpyrrolidon (PVP), control lager beer peaked in the formation of tannoid at $70\;{\sim}\;80\;mg$ of PVP, the 1st extract exceeded the detection limit, the 2nd extract at $170\;{\sim}\;180\;mg$, while the third extract at $150\;{\sim}\;160\;mg$ of PVP. The GTE were slow in reacting with PVP, and their formation patterns were different from those of polyphenols from barley and hop. 2) Ale fermentation; The final alcohol content was 9.25% (ABV). The addition of GTE increased the yeast viability after 2 days and finally reached 52.3% from 30.9%. Total polyphenol in GTE beer increased by 1.5 times (p < .05). However, its tannoid contents increased by 6.4 times. 3) Lager fermentation; The final alcohol content was 5.93% (ABV). The effect of GTE on lager beer was minimal for all variables. However, total polyphenol of GTE beer increased by 1.4 times (p < .05). Its tannoid increased by 3.3 times (p < .05).

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor

  • Wang, Jin-Jing;Wang, Zhao-Yue;He, Xiu-Ping;Zhang, Bo-Run
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1539-1545
    • /
    • 2010
  • In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.

Optimal Conditions for Propagation in Bottom and Top Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Lee, Si-Kyung;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.739-744
    • /
    • 2008
  • The method of yeast propagation has an influence on yeast physiology, fermentation ability, flocculation rate, and taste stability of beer. In order to find optimal conditions for propagation, several parameters were investigated in combinations. The bottom brewing yeast grown at $10^{\circ}C$ indicated that a higher flocculation capacity during the $1^{st}$ fermentation. However, the taste stability and the aroma profile were not affected by parameters of propagation investigated. The beer quality was rather affected by storage duration. In addition, a correlation between tasting and chemiluminescence was found at the beer, which was produced using bottom brewing yeast. The propagation at $10-25^{\circ}C$ with addition of zinc ion indicated the best condition to improve fermentation ability, flocculation rate, and filterability for bottom brewing yeast, whereas the propagation at $30^{\circ}C$ with addition of zinc ion showed the best condition to increase fermentation ability for top brewing yeasts.

Double-stage Batch Fermentation of Beer Part II. Trials under Plant Fermention Conditions (이단회분식 맥주발효 제II보 공장발효조건하에서의 시양)

  • Pack, M.Y.
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.2
    • /
    • pp.89-93
    • /
    • 1975
  • In order to ferment beer more effectively under conditions similar to the conventional batch fermentation, a part of the wort which had been fermenting for three days was replaced with un-pitched fresh wort and completed the rest of the fermentation in four to six days. The taste test panel accepted the beers fermented for five days after diluting with one third or one half volume of freshl wort giving fermentation efficiency gains by 22% or 28% over the regular nine-day batch fermentation respectively.

  • PDF

Saccharification and Fermentation Capability of the Waste from Beer Fermentation Broth (맥주 폐 효모액의 당화 및 에탄올 발효능)

  • Kang, MinKyung;Kim, Minah;Yu, Bowan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.709-715
    • /
    • 2013
  • The waste from beer fermentation broth (WBFB) has been found an excellent and inexpensive resource for bioethanol production. We tried to evaluate the saccharification and fermentation capabilities of WBFB to confirm its effectiveness for bioethanol production. The saccharification potentials of the WBFB were evaluated at various temperatures (30, 40, 50, 60 and $70^{\circ}C$). It was found that the saccharification capabilities increased with temperature and highest reached maximum at $60^{\circ}C$ and $70^{\circ}C$ after 4h. Ethanol production from a mixture of WBFB and chemically defined media (CDM) without addition of any microbial species confirmed the fermentation capabilities of WBFB. Simultaneous saccharification and fermentation were performed using WBFB, starch solution and CDM as culturing media. The maximum yield of bioethanol production was obtained at $30^{\circ}C$. The saccharifying enzymes and the yeast cells present in WBFB were essential factors for the production of bioethanol from WBFB without any additional enzymes or microbial cells.

Physicochemical characteristics of beer with rice nuruk

  • Kang, Sun-a;Kwon, Ye-seul;Jeong, Seok-tae;Choi, Han-seok;Im, Bo-ra;Yeo, Su-hwan;Kang, Ji-eun
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.229-234
    • /
    • 2020
  • Beer production with rice or other malt substitutes suffers from a lack of suitable enzymes for saccharification. For this reason, rice nuruk (fermentation starter) was tested as a starch replacement for malt in the saccharification process of beer production. The results of this study show that the enzyme activities of rice nuruk made with brewing fungi were higher than those of malt. Saccharification and glucoamylase activities were high in Aspergillus awamori KCCM 30790 and α-amylase activity was high in Aspergillus oryzae CF1003. Overall, malt beer had significantly higher alcohol, pH, total acid, volatile acids, amino acids, free amino nitrogen, bitterness unit and ΔE than rice nuruk beer. Where as Aspergillus awamori KCCM 30790 beer had significantly higher soluble solids, reducing sugar than malt beer. According to a sensory evaluation, malt beer was better color, flavor and Aspergillus oryzae CF1003 beer was better taste, texture, overall acceptability than other beer. Therefore Aspergillus awamori KCCM 30790 beer was suitable considering enzyme activities (saccharification, glucoalmylase) and physicochemical characteristics (soluble solids, reducing sugar). And then Aspergillus oryzae CF1003 beer was suitable considering sensory evaluation (taste, texture, overall acceptability). Therefore rice nuruk like Aspergillus awamori KCCM 30790 and Aspergillus oryzae CF1003 were suitable as a substitute material that can replace for malt in beer proceccing.