Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04007

Construction of Amylolytic Industrial Brewing Yeast Strain with High Glutathione Content for Manufacturing Beer with Improved Anti-Staling Capability and Flavor  

Wang, Jin-Jing (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences)
Wang, Zhao-Yue (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences)
He, Xiu-Ping (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences)
Zhang, Bo-Run (The Laboratory of Molecular Genetics and Breeding of Yeasts, Institute of Microbiology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.11, 2010 , pp. 1539-1545 More about this Journal
Abstract
In beer, glutathione works as the main antioxidant compound, which also correlates with the stability of the beer flavor. In addition, high residual sugars in beer contribute to major nonvolatile components, which are reflected in a high caloric content. Therefore, in this study, the Saccharomyces cerevisiae GSH1 gene encoding glutamylcysteine synthetase and the Saccharomycopsis fibuligera ALP1 gene encoding ${\alpha}$-amylase were coexpressed in industrial brewing yeast strain Y31 targeting the ${\alpha}$-acetolactate synthase (AHAS) gene (ILV2) and alcohol dehydrogenase gene (ADH2), resulting in the new recombinant strain TY3. The glutathione content in the fermentation broth of TY3 increased to 43.83 mg/l as compared with 33.34 mg/l in the fermentation broth of Y31. The recombinant strain showed a high ${\alpha}$-amylase activity and utilized more than 46% of the starch as the sole carbon source after 5 days. European Brewery Convention tube fermentation tests comparing the fermentation broths of TY3 and Y31 showed that the flavor stability index for TY3 was 1.3-fold higher, whereas its residual sugar concentration was 76.8% lower. Owing to the interruption of the ILV2 gene and ADH2 gene, the contents of diacetyl and acetaldehyde as off-flavor compounds were reduced by 56.93% and 31.25%, respectively, when compared with the contents in the Y31 fermentation broth. In addition, since no drug-resistant genes were introduced to the new recombinant strain, it should be more suitable for use in the beer industry, owing to its better flavor stability and other beneficial characteristics.
Keywords
Industrial brewing yeast; beer aging; amylolytic activity; flavor;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Zhang, Y. X., Q. Li, W. Shen, Y. Xie, and G. X. Gu. 2008. Effects of knockout ECM25/YJL210W gene in brewing yeast on beer flavor stability. Chinese J. Biotechnol. 24: 1420-1427.   DOI   ScienceOn
2 Zhang, Y., Z. Y. Wang, X. P. He, N. Liu, and B. R. Zhang. 2008. New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int. J. Food Microbiol. 123: 18-24.   DOI   ScienceOn
3 Zhao, L. J., D. L. Wang, Y. L. Cheng, J. Z. Zhou, and B. G. Ge. 2006. Study on the control of aldehyde content in beer by molecular biological measures. Liquor-making Sci. Technol. 1: 45-47. [In Chinese]
4 Sun, J. S., W. J. Zhang, F. C. Jia , Y. Yang, Z. P. Lin, J. Z. Feng, P. Martin, and D. L. Wang. 2006. Disruption of brewer's yeast alcohol dehydrogenase II gene and reduction of acetaldehyde content during brewery fermentation. J. Am. Soc. Brew. Chem. 64: 195-201.
5 Van Rensburg, P., M. L. A. Strauss, M. G. Lambrechts, R. R. C. Otero, and I. S. Pretorius. 2007. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. J. Appl. Microbiol. 103: 2248-2257.   DOI   ScienceOn
6 Vilanova, M., P. Blanco, S. Cortez, M. Castro, T. G. Villal, and C. Sieiro. 2000. Use of PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentation. J. Appl. Microbiol. 89: 876-883.   DOI   ScienceOn
7 Wang, J. J., Z. Y. Wang, X. F. Liu, X. N. Guo, X. P. He, P. C. Wensel, and B. R. Zhang. 2010. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10013
8 Wang, Z. Y., X. P. He, W. H. Li, N. Liu, and B. R. Zhang. 2008. Construction of self-cloning brewing yeast with highglutathione and low-diacetyl production. Int. J. Food Sci. Tech. 43: 989-994.   DOI   ScienceOn
9 Wang, Z. Y., X. P. He, and B. R. Zhang. 2007. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast. Int. J. Food Microbiol. 119: 192-199.   DOI   ScienceOn
10 Wang, Z. Y., J. J. Wang, X. F. Liu, X. P. He, and B. R. Zhang. 2009. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette. FEMS Yeast Res. 9: 574-581.   DOI   ScienceOn
11 Nogueira, F. N., D. N. Souza, and J. Nicolau. 2000. In vitro approach to evaluate potential harmful effects of beer on health. J. Dent. Res. 28: 271-276.   DOI   ScienceOn
12 Yan, M., Q. Li, and G. X. Gu. 2005. The estimation of endogenesis antioxidative activity of beer by DPPH radical scavenging capacity. Sci. Technol. Food Ind. 26: 82-83, 87. [In Chinese]
13 Zhang, J. N., X. P. He, X. N. Guo, N. Liu, and B. R. Zhang. 2005. Genetically modified industrial brewing yeast with highglutathione and low-diacetyl production. Chinese J. Biotechnol. 21: 942-946. [In Chinese]
14 Nieto, A., J. A. Prieto, and P. Sanz. 1999. Stable high-copy number integration of Aspergillus orizae $\alpha$-amylase cDNA in an industrial baker's yeast strain. Biotech. Progr. 15: 459-466.   DOI   ScienceOn
15 Parsons, R. and R. Cope. 1983. The assessment and prediction of beer flavor stability. Proceedings of the Congress of the European Brewery Convention. Information Press, Oxford
16 Penninckx, M. J. 2002. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2: 295-305.
17 Pézer-Gonzalez, J. A., R. Gonzalez, A. Querol, J. Sendra, and D. Ramoón. 1993. Construction of a recombinant wine yeast strain expression $\beta$-(1,4)-endoglucanase and its use in microvinification processes. Appl. Environ. Microbiol. 59: 2801- 2806.
18 Liu, Z. R., G. Y. Zhang, Z. F. Long, and S. G. Liu. 2005. Heterologous expression of amylase gene from Saccharomycopsis fibuligera in an industrial strain of Saccharomyces Cerevisiae. Wuhan Univ. J. Nat. Sci. 10: 1041-1046.   DOI
19 Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346.   DOI   ScienceOn
20 Liu, X. F., Z. Y. Wang, J. J. Wang, Y. Lu, X. P. He, and B. R. Zhang. 2009. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett. Appl. Microbiol. 49: 117-123.   DOI   ScienceOn
21 McTigue, K. M., R. Harris, and B. Hemphill. 2003. Screening and interventions for obesity in adults: Summary of the evidence for the U.S. Preventive Services Task Force. Ann. Int. Med. 139: 933-949.   DOI   ScienceOn
22 Fan, X., X. He, X. Guo, N. Qu, Ch. Wang, and B. Zhang. 2004. Increasing glutathione formation by functional expression of $\gamma$- glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotech. Lett. 26: 415-417.
23 Miller, J. L., W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132.
24 Douglas, K. T. 1987. Mechanisms of action of glutathionedependent enzymes, pp. 103-167. In A. Meister (ed.). Advances in Enzymology. John Wiley & Sons, NY.
25 Eksteen, J. M., P. van Rensburg, R. R. C. Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646.   DOI   ScienceOn
26 Gange, M. A., F. Pinãga, S. Valleâs, D. Ramoân, and A. Querol. 1999. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int. J. Food Microbiol. 47: 171-178.   DOI   ScienceOn
27 Jiang, K., Q. Li, and G. X. Gu. 2007. Improvement of beer antistaling capability by genetically modifying industrial brewing yeast with high glutathione content. Chinese J. Biotechnol. 23: 1071-1076. [In Chinese]   DOI   ScienceOn
28 Li, H., C. X. Song, Y. Y. Wu, and W. J. Zhang. 2005. Correlation studies of beer resistant indexes and beer staling value. Liquormaking SciTechnol. 1: 57-60. [In Chinese]
29 Kang, N. Y., J. N. Park, J. E. Chin, H. B. Lee, S. Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis $\alpha$-amylase gene. Biotech. Lett. 25: 1847-1851.   DOI   ScienceOn
30 Landaud, S., P. Lieben, and D. Picque. 1998. Quantitative analysis of diacetyl, pentanedione and their precursors during beer fermentation by an accurate GC/MS method. J. Inst. Brew. 104: 93-99.   DOI   ScienceOn
31 Adamis, P. D. B., A. D. Panek, S. G. F. Leite, and E. C. A. Eleutherio. 2003. Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Braz. J. Microbiol 34: 55-60.
32 Back, W., O. Franz, and T. Nakamura. 2001. Das antioxidative potenzial von Bier. Brauwelt 141: 209-215.
33 Cai, Y., Q. Mu, Z. Y. Wang, B. R. Zhang, and B. J. Yan. 2008. Construction of self-cloning industrial brewing yeast with highglutathione production and low ADH II enzyme activity. Microbiolgy 35: 1171-1175 [In Chinese]
34 Baur, X., Z. Chen, and I. Sander. 1994. Isolation and denomination of an important allergen in baking additives: $\alpha$-Amylase from Aspergillus orizae (Asp O II). Clin. Exp. Allergy 24: 1465-1470.
35 Bergmeyer, H. V., K. Gacoehm, and M. Grassl. 1974. In H. V. Bergmeyer (ed.). Methods of Enzymatic Analysis, Vol. 2, pp. 428-429. Academic Press, NY.
36 Blandino, A., I. Caro, and D. Cantero. 1997. Comparative study of alcohol dehydrogenase activity of flor yeast extracts. Biotech. Lett. 19: 651-654.   DOI   ScienceOn