References
- Adamis, P. D. B., A. D. Panek, S. G. F. Leite, and E. C. A. Eleutherio. 2003. Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Braz. J. Microbiol 34: 55-60.
- Back, W., O. Franz, and T. Nakamura. 2001. Das antioxidative potenzial von Bier. Brauwelt 141: 209-215.
-
Baur, X., Z. Chen, and I. Sander. 1994. Isolation and denomination of an important allergen in baking additives:
$\alpha$ -Amylase from Aspergillus orizae (Asp O II). Clin. Exp. Allergy 24: 1465-1470. - Bergmeyer, H. V., K. Gacoehm, and M. Grassl. 1974. In H. V. Bergmeyer (ed.). Methods of Enzymatic Analysis, Vol. 2, pp. 428-429. Academic Press, NY.
- Blandino, A., I. Caro, and D. Cantero. 1997. Comparative study of alcohol dehydrogenase activity of flor yeast extracts. Biotech. Lett. 19: 651-654. https://doi.org/10.1023/A:1018386731116
- Cai, Y., Q. Mu, Z. Y. Wang, B. R. Zhang, and B. J. Yan. 2008. Construction of self-cloning industrial brewing yeast with highglutathione production and low ADH II enzyme activity. Microbiolgy 35: 1171-1175 [In Chinese]
- Douglas, K. T. 1987. Mechanisms of action of glutathionedependent enzymes, pp. 103-167. In A. Meister (ed.). Advances in Enzymology. John Wiley & Sons, NY.
-
Eksteen, J. M., P. van Rensburg, R. R. C. Otero, and I. S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the
$\alpha$ -amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84: 639-646. https://doi.org/10.1002/bit.10797 -
Fan, X., X. He, X. Guo, N. Qu, Ch. Wang, and B. Zhang. 2004. Increasing glutathione formation by functional expression of
$\gamma$ - glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotech. Lett. 26: 415-417. - Gange, M. A., F. Pinãga, S. Valleâs, D. Ramoân, and A. Querol. 1999. Aroma improving in microvinification processes by the use of a recombinant wine yeast strain expressing the Aspergillus nidulans xlnA gene. Int. J. Food Microbiol. 47: 171-178. https://doi.org/10.1016/S0168-1605(98)00202-5
- Jiang, K., Q. Li, and G. X. Gu. 2007. Improvement of beer antistaling capability by genetically modifying industrial brewing yeast with high glutathione content. Chinese J. Biotechnol. 23: 1071-1076. [In Chinese] https://doi.org/10.1016/S1872-2075(07)60065-X
-
Kang, N. Y., J. N. Park, J. E. Chin, H. B. Lee, S. Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis
$\alpha$ -amylase gene. Biotech. Lett. 25: 1847-1851. https://doi.org/10.1023/A:1026281627466 - Landaud, S., P. Lieben, and D. Picque. 1998. Quantitative analysis of diacetyl, pentanedione and their precursors during beer fermentation by an accurate GC/MS method. J. Inst. Brew. 104: 93-99. https://doi.org/10.1002/j.2050-0416.1998.tb00981.x
- Li, H., C. X. Song, Y. Y. Wu, and W. J. Zhang. 2005. Correlation studies of beer resistant indexes and beer staling value. Liquormaking SciTechnol. 1: 57-60. [In Chinese]
- Liu, X. F., Z. Y. Wang, J. J. Wang, Y. Lu, X. P. He, and B. R. Zhang. 2009. Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett. Appl. Microbiol. 49: 117-123. https://doi.org/10.1111/j.1472-765X.2009.02627.x
- Liu, Z. R., G. Y. Zhang, Z. F. Long, and S. G. Liu. 2005. Heterologous expression of amylase gene from Saccharomycopsis fibuligera in an industrial strain of Saccharomyces Cerevisiae. Wuhan Univ. J. Nat. Sci. 10: 1041-1046. https://doi.org/10.1007/BF02832464
- McTigue, K. M., R. Harris, and B. Hemphill. 2003. Screening and interventions for obesity in adults: Summary of the evidence for the U.S. Preventive Services Task Force. Ann. Int. Med. 139: 933-949. https://doi.org/10.7326/0003-4819-139-11-200312020-00013
- Miller, J. L., W. E. Glennon, and A. L. Burton. 1960. Measurement of carboxymethylcellulase activity. Anal. Biochem. 2: 127-132.
-
Nieto, A., J. A. Prieto, and P. Sanz. 1999. Stable high-copy number integration of Aspergillus orizae
$\alpha$ -amylase cDNA in an industrial baker's yeast strain. Biotech. Progr. 15: 459-466. https://doi.org/10.1021/bp9900256 - Nogueira, F. N., D. N. Souza, and J. Nicolau. 2000. In vitro approach to evaluate potential harmful effects of beer on health. J. Dent. Res. 28: 271-276. https://doi.org/10.1016/S0300-5712(99)00072-X
- Parsons, R. and R. Cope. 1983. The assessment and prediction of beer flavor stability. Proceedings of the Congress of the European Brewery Convention. Information Press, Oxford
- Penninckx, M. J. 2002. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res. 2: 295-305.
-
Pézer-Gonzalez, J. A., R. Gonzalez, A. Querol, J. Sendra, and D. Ramoón. 1993. Construction of a recombinant wine yeast strain expression
$\beta$ -(1,4)-endoglucanase and its use in microvinification processes. Appl. Environ. Microbiol. 59: 2801- 2806. - Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. https://doi.org/10.1007/BF00340712
- Sun, J. S., W. J. Zhang, F. C. Jia , Y. Yang, Z. P. Lin, J. Z. Feng, P. Martin, and D. L. Wang. 2006. Disruption of brewer's yeast alcohol dehydrogenase II gene and reduction of acetaldehyde content during brewery fermentation. J. Am. Soc. Brew. Chem. 64: 195-201.
- Van Rensburg, P., M. L. A. Strauss, M. G. Lambrechts, R. R. C. Otero, and I. S. Pretorius. 2007. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae. J. Appl. Microbiol. 103: 2248-2257. https://doi.org/10.1111/j.1365-2672.2007.03474.x
- Vilanova, M., P. Blanco, S. Cortez, M. Castro, T. G. Villal, and C. Sieiro. 2000. Use of PGU1 recombinant Saccharomyces cerevisiae strain in oenological fermentation. J. Appl. Microbiol. 89: 876-883. https://doi.org/10.1046/j.1365-2672.2000.01197.x
- Wang, J. J., Z. Y. Wang, X. F. Liu, X. N. Guo, X. P. He, P. C. Wensel, and B. R. Zhang. 2010. Construction of an industrial brewing yeast strain to manufacture beer with low caloric content and improved flavor. J. Microbiol. Biotechnol. doi: 10.4014/jmb.0910.10013
- Wang, Z. Y., X. P. He, W. H. Li, N. Liu, and B. R. Zhang. 2008. Construction of self-cloning brewing yeast with highglutathione and low-diacetyl production. Int. J. Food Sci. Tech. 43: 989-994. https://doi.org/10.1111/j.1365-2621.2007.01546.x
- Wang, Z. Y., X. P. He, and B. R. Zhang. 2007. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast. Int. J. Food Microbiol. 119: 192-199. https://doi.org/10.1016/j.ijfoodmicro.2007.07.015
- Wang, Z. Y., J. J. Wang, X. F. Liu, X. P. He, and B. R. Zhang. 2009. Recombinant industrial brewing yeast strains with ADH2 interruption using self-cloning GSH1+CUP1 cassette. FEMS Yeast Res. 9: 574-581. https://doi.org/10.1111/j.1567-1364.2009.00502.x
- Yan, M., Q. Li, and G. X. Gu. 2005. The estimation of endogenesis antioxidative activity of beer by DPPH radical scavenging capacity. Sci. Technol. Food Ind. 26: 82-83, 87. [In Chinese]
- Zhang, J. N., X. P. He, X. N. Guo, N. Liu, and B. R. Zhang. 2005. Genetically modified industrial brewing yeast with highglutathione and low-diacetyl production. Chinese J. Biotechnol. 21: 942-946. [In Chinese]
- Zhang, Y., Z. Y. Wang, X. P. He, N. Liu, and B. R. Zhang. 2008. New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int. J. Food Microbiol. 123: 18-24. https://doi.org/10.1016/j.ijfoodmicro.2007.11.070
- Zhang, Y. X., Q. Li, W. Shen, Y. Xie, and G. X. Gu. 2008. Effects of knockout ECM25/YJL210W gene in brewing yeast on beer flavor stability. Chinese J. Biotechnol. 24: 1420-1427. https://doi.org/10.1016/S1872-2075(08)60063-1
- Zhao, L. J., D. L. Wang, Y. L. Cheng, J. Z. Zhou, and B. G. Ge. 2006. Study on the control of aldehyde content in beer by molecular biological measures. Liquor-making Sci. Technol. 1: 45-47. [In Chinese]
Cited by
- 125th Anniversary Review: The Non-Biological Instability of Beer vol.117, pp.4, 2010, https://doi.org/10.1002/j.2050-0416.2011.tb00496.x
- Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid vol.46, pp.7, 2011, https://doi.org/10.1016/j.procbio.2011.03.011
- Integrated expression of the α-amylase, dextranase and glutathione gene in an industrial brewer’s yeast strain vol.28, pp.1, 2010, https://doi.org/10.1007/s11274-011-0811-6
- Engineering yeasts for raw starch conversion vol.95, pp.6, 2010, https://doi.org/10.1007/s00253-012-4248-0
- 125thAnniversary Review: Developments in brewing and distilling yeast strains : Developments in brewing and distilling yeast strains vol.119, pp.4, 2013, https://doi.org/10.1002/jib.104
- Development of Industrial Brewing Yeast with Low Acetaldehyde Production and Improved Flavor Stability vol.169, pp.3, 2010, https://doi.org/10.1007/s12010-012-0077-y
- Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability vol.30, pp.6, 2010, https://doi.org/10.1007/s11274-014-1617-0
- Construction of dextrin and isomaltose-assimilating brewer’s yeasts for production of low-carbohydrate beer vol.36, pp.8, 2010, https://doi.org/10.1007/s10529-014-1530-5
- A study on kinetics of beer ageing and development of methods for predicting the time to detection of flavour changes in beer : Methods for predicting the time of detection of flavour changes in beer vol.121, pp.1, 2010, https://doi.org/10.1002/jib.194
- 유전자 형질전환을 통한 쌀 전분 분해효소 재조합 효모균주의 개발과 발효특성조사 vol.52, pp.2, 2016, https://doi.org/10.7845/kjm.2016.6021
- Reduced acetaldehyde production by genome shuffling of an industrial brewing yeast strain : Reduced acetaldehyde production by genome shuffling of an industrial brewing yeast strain vol.123, pp.4, 2010, https://doi.org/10.1002/jib.457
- The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production vol.124, pp.3, 2010, https://doi.org/10.1002/jib.498
- The use of atmospheric and room temperature plasma mutagenesis to create a brewing yeast with reduced acetaldehyde production vol.124, pp.3, 2010, https://doi.org/10.1002/jib.498
- Adaptive Laboratory Evolution of Ale and Lager Yeasts for Improved Brewing Efficiency and Beer Quality vol.11, pp.1, 2010, https://doi.org/10.1146/annurev-food-032519-051715