• Title/Summary/Keyword: beamforming method

Search Result 322, Processing Time 0.026 seconds

Target Altitude Extraction for Multibeam Surveillance Radar in Normal Environmental Condition (정상 환경 상태에서 다중 빔 탐색 레이다의 표적 고도 추출)

  • Chung, Myung-Soo;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1090-1097
    • /
    • 2007
  • The multibeam surveillance radar is a state-of art of 3D radar technology. It applies the stacked beam-on-received realized by a digital beamformer. In this paper, a design concept of beamformer and a method of target altitude extraction for multibeam surveillance radar in the normal environmental condition considering no multipath situations are proposed and investigated. The extraction algorithm based on antenna sine space coordinated system in a FFT digital beamformer is described. The proposed algorithm is simulated by 1 look-up table data and confirmed to have consistent results in accordance with a variety of target altitudes and a full radar frequency range.

Orthogonal Waveform Space Projection Method for Adaptive Jammer Suppression

  • Lee, Kang-In;Yoon, Hojun;Kim, Jongmann;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.868-874
    • /
    • 2018
  • In this paper, we propose a new jammer suppression algorithm that uses orthogonal waveform space projection (OWSP) processing for a multiple input multiple output (MIMO) radar system exposed to a jamming signal. Generally, a conventional suppression algorithm based on adaptive beamforming (ABF) needs a covariance matrix composed of the jammer and noise only. By exploiting the orthogonality of the transmitting waveforms of MIMO, we can construct a transmitting waveform space (TWS). Then, using the OWSP processing, we can build a space orthogonal to the TWS that contains no SOI. By excluding the SOI from the received signal, even in the case that contains the SOI and jamming signal, the proposed algorithm makes it possible to evaluate the covariance matrix for ABF. We applied the proposed OWSP processing to suppressing the jamming signal in bistatic MIMO radar. We verified the performance of the proposed algorithm by comparing the SINR loss to that of the ideal covariance matrix composed of the jammer and noise only. We also derived the computational complexity of the proposed algorithm and compared the estimation of the DOD and DOA using the SOI with those using the generalized likelihood ratio test (GLRT) algorithm.

Designing a Microphone Array System for Noise Measurements on High-Speed Trains (고속철도 차량의 소음 측정을 위한 마이크로폰 어레이 설계 연구)

  • Noh, Hee-Min;Choi, Sung-Hoon;Hong, Suk-Yoon;Kim, Seog-Won
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.477-483
    • /
    • 2011
  • In this paper, noise source localization of the Korean high speed train was conducted by using delay and sum beam-forming method of a microphone array. At first, the microphone array having irregular configuration was designed and the resolution of which was analyzed from parameters such as 3-dB bandwidth and maximum side-lobe level. After the demonstration, the microphone array was applied on the high speed train and noise localization of the high speed train driving at 300 km/h was performed successfully.

Cell Searching and DoA Estimation Method for a Mobile Relay with Multiple Antennas (다중 안테나를 갖는 이동 릴레이의 셀 탐색과 입사각 추정방법)

  • Ko, Yo-Han;Kang, Hyun-Jin;Cho, Yong-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.63-69
    • /
    • 2007
  • propose a mobile relay structure for vehicles with multiple antennas, which can increase performances of mobile communication systems and broadcasting systems significantly. Since cell searching and DoA estimation are required for the terminal in hard handover cellular system, joint techniques for cell searching and DoA estimation are proposed to apply beamforming technique for the mobile relay with multiple antennas located at the cell boundary. The proposed cell searching and DoA estimation techniques are evaluated by computer simulation under the environment similar to WiBro system.

Sound Source Detection Technique Considering the Effects of Source Bandwidth and Measurement Noise Correlation (소음원 대역폭과 측정잡음의 상관관계를 고려한 소음원 탐지기법)

  • 윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2001
  • Various array processing techniques to identify the noise source position or bearing have been developed. Typical array processing techniques which are based on time delay between received signals at two sensors, are classified as conventional beamforming, correlation function and NAH (Near-Field Acoustic Holography) techniques which have their own characteristics with respect to application field and signal processing method. In this study, correlation function technique which could be applied for broadband noise source detection, is adopted and the effective detection technique is proposed considering the effects of source bandwidth and measurement noise correlation of noise sources. The validity of the Proposed technique is evaluated using the 3-dimensional nonlinear any which does not give 3-dimensional Position or bearing ambiguity

  • PDF

A Study on Hydrophone Array Design Optimization for Cavitation Tunnel Noise Measurements (캐비테이션 터널 시험용 청음기배열 최적 설계기법)

  • Park, Cheolsoo;Seol, Hanshin;Kim, Gundo;Park, Youngha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • This paper proposes a hydrophone array design optimization technique for cavitation tunnel noise measurements. The optimization technique comprises of design parameters, an objective function and an optimization algorithm. The design parameters are defined for circular, spiral and multi-spiral arrays. The objective function is defined so as to consider the mainlobe beamwidth and the maximum sidelobe level simultaneously. A global optimization scheme is applied to the array design using very fast simulated reannealing (VFSR). After applying the optimization technique to arrays respectively, the peak sidelobe level and the mainlobe beamwidth of optimum arrays are analyzed. Finally the array patterns considering multiple reflections in the cavitation tunnel are evaluated to validate the proposed method.

FPGA-Based Low-Power and Low-Cost Portable Beamformer Design (FPGA 기반 저전력 및 저비용 휴대용 빔포머 설계)

  • Jeong, GabJoong;Park, CheolYoung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this paper, we develop a beamforming front end platform with pipeline circuit configuration method that can apply various clinical diagnostic applications of ultrasound image technology. Hardware design targets compression applications as well as scalable applications where power, integration levels and replication possibilities are important. Firmware design was implemented to achieve optimal FPGA parallel processing level by constructing new IP and system-oriented design environment to accelerate design productivity with maximum productivity improvement using Vivado HLS tool, which is a next generation high level synthesis tool. Former supports the high-speed management function of scan data that can create an image area arbitrarily and can be appropriately corrected and supplemented when reconfiguring or changing system specifications in the future.

A study on development of simulation model of Underwater Acoustic Imaging (UAI) system with the inclusion of underwater propagation medium and stepped frequency beam-steering acoustic array

  • L.S. Praveen;Govind R. Kadambi;S. Malathi;Preetham Shankpal
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-224
    • /
    • 2023
  • This paper proposes a method for the acoustic imaging wherein the traditional requirement of the relative movement between the transmitter and target is overcome. This is facilitated through the beamforming acoustic array in the transmitter, in which the target is illuminated by the array at various azimuth and elevation angles without the physical movement of the acoustic array. The concept of beam steering of the acoustic array facilitates the formation of the beam at desired angular positions of azimuth and elevation angles. This paper substantiates that the combination of illumination of the target from different azimuth and elevation angles with respect to the transmitter (through the beam steering of beam forming acoustic array) and the beam steering at multiple frequencies (through SF) results in enhanced reconstruction of images of the target in the underwater scenario. This paper also demonstrates the possibility of reconstruction of the image of a target in underwater without invoking the traditional algorithms of Digital Image Processing (DIP). This paper comprehensively and succinctly presents all the empirical formulae required for modelling the acoustic medium and the target to facilitate the reader with a comprehensive summary document incorporating the various parameters of multi-disciplinary nature.

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Evolution of the synthetic aperture imaging method in medical ultrasound system (초음파진단기 합성구경영상법의 진화)

  • Bae, MooHo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.534-544
    • /
    • 2022
  • Medical ultrasound system has been widely used to visualize the lesion for diagnostics in most medical service site including hospitals and clinics thanks to its advantages such as real time operation, ease of use, safety. Among many signal processing blocks of the system, one of the most important part that governs the image quality is the beamformer, and technologies for this part has been continuously developed in long time. The synthetic aperture imaging method, that is one of the major technologies of beamforming, was introduced to maximize utilizing the information delivered from the patient's body through the probe, and contributed to breakthrough of the image quality since it was introduced in around 1990's, and evolved continuously in decades. This paper reviews and surveys the process of development of this technology and expects future evolution.