DOI QR코드

DOI QR Code

Evolution of the synthetic aperture imaging method in medical ultrasound system

초음파진단기 합성구경영상법의 진화

  • Received : 2022.08.08
  • Accepted : 2022.09.01
  • Published : 2022.09.30

Abstract

Medical ultrasound system has been widely used to visualize the lesion for diagnostics in most medical service site including hospitals and clinics thanks to its advantages such as real time operation, ease of use, safety. Among many signal processing blocks of the system, one of the most important part that governs the image quality is the beamformer, and technologies for this part has been continuously developed in long time. The synthetic aperture imaging method, that is one of the major technologies of beamforming, was introduced to maximize utilizing the information delivered from the patient's body through the probe, and contributed to breakthrough of the image quality since it was introduced in around 1990's, and evolved continuously in decades. This paper reviews and surveys the process of development of this technology and expects future evolution.

초음파진단기는 실시간으로 손쉽고 안전하게 환자의 병변을 관찰할 수 있는 등의 다양한 장점으로 인해 병원, 의원 등의 의료현장에서 널리 활용되고 있다. 이 초음파진단기 신호처리 블록 중 하나인 빔포머는 초음파진단기 영상의 화질을 결정하는 부분 중 하나이다. 초음파진단기 기술의 발전과 더불어 이 빔포머와 관련된 기술들도 장기간 많은 발전을 이루어 왔는데, 이 기술들 중 하나의 주요 방법인 합성구경영상법(Synthetic Aperture Imaging method, SAI)은 프로브를 통해 수신한 신호가 운반해 온 환자로부터의 정보를 최대로 활용하기 위한 방법으로, 1990년대 경 최초로 초음파진단기에 도입된 이래 획기적 화질 향상에 기여해 왔고, 수십년동안 다양한 형태의 발전을 거쳐왔다. 이 논문에서는 이러한 진화과정을 살펴보고, 이 기술의 미래의 발전 방향을 예상해 본다.

Keywords

References

  1. A. Macovski, "Ultrasonic imaging using arrays," Proc. IEEE, 484-495 (1976).
  2. A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, 1, 6-43 (2013).
  3. R. E. Williams, "Creating an acoustic synthetic aperture in the ocean," J. Acoust. Soc. Am. 60, 60-73 (1976). https://doi.org/10.1121/1.381049
  4. G. S. Kino, Acoustic Waves: Devices, Imaging and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, 1987), pp. 1-688.
  5. D. K. Peterson and G. S. Kino, "Real-time digital image reconstruction: A description of imaging hardware and an analysis of quantization errors," IEEE Trans. Son. Ultrason. 31, 337-351 (1984). https://doi.org/10.1109/T-SU.1984.31514
  6. Y. Ozaki, H. Sumitani, T. Tomode, and M. Tanaka, "A new system for real-time synthetic aperture ultrasonic imaging," IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 35, 828-838 (1988). https://doi.org/10.1109/58.9340
  7. M. H. Bae, I. H. Sohn, and S. B. Park, "Grating lobe reduction in ultrasonic synthetic focusing," Electronics Letters, 27, 1225-1227 (1991). https://doi.org/10.1049/el:19910769
  8. C. Y. Rew, S. B. Park, and J. B. Ra, "Elimination of all grating lobes in ultrasonic synthetic focusing using a linear array," Electronics Letters, 29, 1729-1732 (1993). https://doi.org/10.1049/el:19931150
  9. M. Karaman, P. C. Li, and M. O'Donnell, "Synthetic aperture imaging for small scale systems," IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 42, 196-207 (1995).
  10. J. R. Talman and S. S. Brunke, "Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 980-988 (1998). https://doi.org/10.1109/58.710573
  11. C. H. Frazier and W. D. O'Brien, "Synthetic aperture techniques with a virtual source element," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 196-207 (1998). https://doi.org/10.1109/58.646925
  12. M. Li, W. Guan, and P. Li, "Improved synthetic aperture focusing technique with applications in highfrequency ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51, 63-70 (2004). https://doi.org/10.1109/TUFFC.2004.1268468
  13. J. Opretzka, M. Vogt, and H. Ermert, "A high frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 1355-1365 (2011). https://doi.org/10.1109/TUFFC.2011.1955
  14. M. H. Bae and M. K. Jeong, "Bidirectional pixel based focusing in conventional B-mode ultrasound imaging," Electronics Letters, 34, 2105-2107 (1998). https://doi.org/10.1049/el:19981484
  15. M. H. Bae and M. K. Jeong, "A study of synthetic-aperture imaging with virtual source elements in Bmode ultrasound imaging systems," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47, 1510-1519 (2000). https://doi.org/10.1109/58.883540
  16. R. T. Hoctor, D. J. Buckton, S. Jagannathan, M. P. Mienkina, and J. Jin, "Systems and methods for ultrasound retrospective transmit focus beamforming," U.S. Patent, 9 366 753 B2, 2015.
  17. O. M. H. Rindal, A. Rodriguez-Molares, and A. Austeng, "A simple, artifact-free, virtual source model," Proc. IEEE Ultrason. Symp. (2018).
  18. J. Kortbek, J. A. Jensen, and K. L. Gammelmark, "Synthetic aperture sequential beamforming", Proc. IEEE Int. Ultrason. Symp. 966-969 (2008).
  19. T. D. Ianni, C. A. V. Hoyos, C. Ewertsen, T. K. Kjeldsen, J. Mosegaard, M. B. Nielsen, and J. A. Jensen, "A vector flow imaging method_for portable ultrasound using synthetic aperture sequential beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 1655-1665 (2017). https://doi.org/10.1109/TUFFC.2017.2742599
  20. M. K. Jeong, K. J. Lee, M. H. Bae, S. Y. Chang, and S. B. Gye, "Beamforming using the synthetic sinc wave for ultrasonic imaging system," Proc. IEEE Ultrason. Symp. 1539-1542 (2001).
  21. J. H. Chang, J. W. Park, and T. K. Song, "A new synthetic aperture focusing method using nonspherical wave fronts," Proc. IEEE Ultrason. Symp. 1525-1528 (2001).
  22. G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 489-506 (2009). https://doi.org/10.1109/TUFFC.2009.1067
  23. J. H. Chang and T. K. Song, "A new synthetic aperture focusing method to suppress the diffraction of ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 327-337 (2011). https://doi.org/10.1109/TUFFC.2011.1810
  24. Q. You, Z. Dong, M. R. Lowerison, and P. Song, "Pixel-oriented adaptive apodization for plane-wave imaging based on recovery of the complete dataset," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 69, 512-522 (2022). https://doi.org/10.1109/TUFFC.2021.3124821
  25. T. Stepinski and F. Lingvall, "Optimized algorithm for synthetic aperture imaging," Proc. IEEE Ultrason. Symp. 701-704 (2004).
  26. H. J. Vos, P. L. M. J. van Neer, M. M. Mota, M. D. Verweij, A. F. W. van der Steen, and A. W. F. Volker, "F-k domain imaging for synthetic aperture sequential beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 60-71 (2016). https://doi.org/10.1109/TUFFC.2015.2499839
  27. E. Moghimirad, C. A. V. Hoyos, A. Mahloojifar, B. M. Asl, and J. A. Jensen, "Synthetic aperture ultrasound Fourier beamformation using virtual sources," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 2018-2030 (2016). https://doi.org/10.1109/TUFFC.2016.2606878
  28. E. Shaswary, J. Tavakkoli, and J. C. Kumaradas, "Efficient frequency-domain synthetic aperture focusing techniques for imaging with a high-frequency single element focused transducer," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 57-70 (2019). https://doi.org/10.1109/tuffc.2018.2881726
  29. S. Chandramoorthi and A. K. Thittai, "ω-k algorithm for sparse-transmit sparse-receive diverging beam synthetic aperture transmit scheme," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 67, 2046-2056 (2020). https://doi.org/10.1109/tuffc.2020.2998802
  30. R. M. Lerner and R. C. Waag, "Wave space interpretation of scattered ultrasound," Ultrason. Med. Biol. 14, 97-102 (1988).
  31. W. F. Walker and G. E. Trahey, "The application of kspace in pulse echo ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 541-558 (1998). https://doi.org/10.1109/58.677599
  32. K. L. Gammelmark and J. A. Jensen, "Duplex synthetic aperture imaging with tissue motion compensation," Proc. IEEE Ultrason. Symp. 1569-1573 (2003).
  33. M. H. Bae, B. S. Kim, M. K. Jeong, W. Y. Lee, J. H. Ham, D. Y. Kim, and H. W. Lee, "A new motion estimation and compensation method for real-time ultrasonic synthetic aperture imaging," Proc. IEEE Ultrason. Symp. 1511-1513 (2007).
  34. K. L. Gammelmark and J. A. Jensen, "2-D tissue motion compensation of synthetic transmit aperture images," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 61, 594-610 (2014). https://doi.org/10.1109/TUFFC.2014.2948
  35. M. H. Bae, B. S. Kim, M. K. Jeong, R. Y. Yoon, H. W. Lee, and Y. G. Kim, "A new architectural design of full aperture, full frame-rate synthetic aperture beamforming ASIC," Proc. IEEE Ultrason. Symp. 1508-1510 (2007).
  36. M. H. Bae, J. H. Ham, R. Y. Yoon, H. W. Lee, and M. K. Jeong, "A new ASIC architecture for ultrasonic synthetic aperture imaging system," Proc. IEEE Ultrason. Symp. 1346-1348 (2009).
  37. J. Amaro, B. Y. S. Yiu, G. Falcao, M. A. C. Gomes, and A. C. H. Yu, "Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 62, 862-870 (2015). https://doi.org/10.1109/TUFFC.2014.006938
  38. H. Y. Sohn, S. H. Seo, J.M. Kim, and T. K. Song, "Software implementation of ultrasound beamforming using ADSP-TS201 DSPs," Proc. of SPIE, 6920 (2008).
  39. C. J. Martin-Arguedas, D. Romero-Laorden, O. MartinezGraullera, M. Perez-Lopez, and L. Gomez-Ullate, "An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 1880-1887 (2012).
  40. T Di Ianni, M. C. Hemmsen, P. L. Muntal, I. H. H. Jorgensen, and J. A. Jensen, "System-level design of an integrated receiver front end for a wireless ultrasound probe," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 1935-1946 (2016). https://doi.org/10.1109/TUFFC.2016.2594769
  41. J. W. Choe, A. Nikoozadeh, O. Oralkan, and B. T. Khuri-Yakub, "GPU-based real-time imaging software suite for medical ultrasound," Proc. IEEE Int. Ultrason. Symp. 2057-2060 (2013).
  42. T. Y. Phuong and J.-G. Lee, "Software based ultrasound B-mode/Beamforming optimization on GPU and its performance prediction," International Conference High Performance Computing (2014).
  43. H. K. H. So, J. Chen, B. Y. S. Yiu, and A. C. H. Yu, "Medical ultrasound imaging: To GPU or not to GPU?," Micro. IEEE, 31, 54-65 (2011). https://doi.org/10.1109/MM.2011.65
  44. S. I. Nikolov and J. A. Jensen, "In-vivo synthetic aperture flow imaging in medical ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50, 848-856 (2003). https://doi.org/10.1109/TUFFC.2003.1214504
  45. I. K. Ekroll, M. M. Voormolen, O. K.-V. Standal, J. M. Rau, and L. Lovstakken, "Coherent compounding in Doppler imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 62, 1634-1643 (2015). https://doi.org/10.1109/TUFFC.2015.007010
  46. J. A. Jensen, "Estimation of high velocities in syntheticaperture imaging-Part I: Theory," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1024-1031 (2019). https://doi.org/10.1109/tuffc.2019.2906384
  47. J. A. Jensen, "Estimation of high velocities in syntheticaperture imaging-Part II: Experimental investigation," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1032-1038 (2019). https://doi.org/10.1109/tuffc.2019.2906390
  48. C. Golfetto, I. K. Ekroll, H. Torp, L. Lovstakken, and J. Avdal, "Retrospective transmit beamforming and coherent plane-wave compounding for microvascular Doppler imaging: A comparison study," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1105-1116 (2021). https://doi.org/10.1109/TUFFC.2020.3033719
  49. H. Andresen, S. I. Nikolov, and J. A. Jensen, "Precise time-of-flight calculation for 3-D synthetic aperture focusing," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 1880-1887 (2009). https://doi.org/10.1109/TUFFC.2009.1264
  50. H. Andresen, S. I. Nikolov, M. M. Pedersen, D. Buckton, and J. A. Jensen, "Three-dimensional synthetic aperture focusing using a rocking convex array transducer," Trans. Ultrason. Ferroelect. Freq. Contr. 57, 1051-1063 (2010). https://doi.org/10.1109/TUFFC.2010.1517
  51. Y. Li, M. C. Kolios, and Y. Xu, "3-D large-pitch synthetic transmit aperture imaging with a reduced number of measurement channels: A feasibility study," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1628-1640 (2021). https://doi.org/10.1109/TUFFC.2020.3043326
  52. J. Synnevag, A. Austeng, and S. Holm, "Adaptive beamforming applied to medical ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 54, 1606-1613 (2007). https://doi.org/10.1109/TUFFC.2007.431
  53. Y. Qi, Y. Wang, and W. Guo"Joint subarray coherence and minimum variance beamformer fo multitransmission ultrasound imaging modalities," IEEE Trans. Ultrason. Ferroelect. Ultrason. Ferroelect. Freq. Contr. 65, 1600-1617 (2018). https://doi.org/10.1109/TUFFC.2018.2851073
  54. Z. Lan, L. Jin, S. Feng, C. Zheng, Z. Han, and H. Peng, "Joint generalized coherence factor and minimum variance beamformer for synthetic aperture ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1167-1183 (2021). https://doi.org/10.1109/TUFFC.2020.3035412
  55. H.-N. Lee, S.-I. Park, and S.-C. Park, "Introduction to compressed sensing" (in Korean), J. IEIE, 38, 19-30 (2011).
  56. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, 52, 1289-1306 (2006). https://doi.org/10.1109/TIT.2006.871582
  57. J. Liu, Q. He, and J. Luo, "A compressed sensing strategy for synthetic transmit aperture ultrasound imaging," IEEE Trans. Medical Imaging, 36, 878-891 (2017). https://doi.org/10.1109/TMI.2016.2644654
  58. J. Liu, Q. He, and J. Luo, "Compressed sensing based synthetic transmit aperture imaging validation in a convex array configuration," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 65, 300-315 (2018). https://doi.org/10.1109/TUFFC.2017.2682180
  59. M. H. Bae, H. W. Lee, R. Y. Yoon, M. K. Jeong, and Y. G. Kim, "A new ultrasonic synthetic aperture tissue harmonic imaging system," Proc. IEEE Ultrason. Symp. 1258-1261 (2008).
  60. M. H. H. Varnosfaderani, B. M. Asl, and S. Faridsoltani, "An adaptive synthetic aperture method applied to ultrasound tissue harmonic imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 65, 557-569 (2018). https://doi.org/10.1109/tuffc.2018.2799870
  61. M. K. Jeong, "Medical ultrasonic elasticity imaging techniques" (in Korean), J. Korean Soc. Nondestruc. Test, 32, 573-584 (2012). https://doi.org/10.7779/JKSNT.2012.32.5.573
  62. R. Ahmed and M. M. Doyley, "Distributing synthetic focusing over multiple push-detect events enhances shear wave elasticity imaging performance," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1170-1184 (2019). https://doi.org/10.1109/tuffc.2019.2911036
  63. M. Mirzaei, A. Asif, and H. Rivaz, "Virtual source synthetic aperture for accurate lateral displacement estimation in ultrasound elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1687-1695 (2021). https://doi.org/10.1109/TUFFC.2020.3046445
  64. A. C. Luchies and B. C. Byram, "Deep neural networks for ultrasound beamforming," IEEE Trans. Medical Imaging, 37, 2010-2021 (2018). https://doi.org/10.1109/tmi.2018.2809641
  65. R. Pandey, J. Kirchhof, F. Krieg, E. Perez, and F. Romer, "Preprocessing of freehand ultrasound synthetic aperture measurements using DNN," Proc. 29'th European Signal Processing Conf. 1402-1405 (2021).
  66. M. Gasse, F. Millioz, E. Roux, D. Garcia, H. Liebgott, and D. Friboulet, "High-quality plane wave compounding using convolutional neural networks," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 1637-1639 (2017). https://doi.org/10.1109/TUFFC.2017.2736890
  67. N. Peretz and A. Feuer, "Deep learning applied to beamforming in synthetic aperture ultrasound," arXiv preprint arXiv:2011.10321 (2020).