References
- A. Macovski, "Ultrasonic imaging using arrays," Proc. IEEE, 484-495 (1976).
- A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, "A tutorial on synthetic aperture radar," IEEE Geoscience and Remote Sensing Magazine, 1, 6-43 (2013).
- R. E. Williams, "Creating an acoustic synthetic aperture in the ocean," J. Acoust. Soc. Am. 60, 60-73 (1976). https://doi.org/10.1121/1.381049
- G. S. Kino, Acoustic Waves: Devices, Imaging and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, 1987), pp. 1-688.
- D. K. Peterson and G. S. Kino, "Real-time digital image reconstruction: A description of imaging hardware and an analysis of quantization errors," IEEE Trans. Son. Ultrason. 31, 337-351 (1984). https://doi.org/10.1109/T-SU.1984.31514
- Y. Ozaki, H. Sumitani, T. Tomode, and M. Tanaka, "A new system for real-time synthetic aperture ultrasonic imaging," IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 35, 828-838 (1988). https://doi.org/10.1109/58.9340
- M. H. Bae, I. H. Sohn, and S. B. Park, "Grating lobe reduction in ultrasonic synthetic focusing," Electronics Letters, 27, 1225-1227 (1991). https://doi.org/10.1049/el:19910769
- C. Y. Rew, S. B. Park, and J. B. Ra, "Elimination of all grating lobes in ultrasonic synthetic focusing using a linear array," Electronics Letters, 29, 1729-1732 (1993). https://doi.org/10.1049/el:19931150
- M. Karaman, P. C. Li, and M. O'Donnell, "Synthetic aperture imaging for small scale systems," IEEE. Trans. Ultrason. Ferroelect. Freq. Contr. 42, 196-207 (1995).
- J. R. Talman and S. S. Brunke, "Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 980-988 (1998). https://doi.org/10.1109/58.710573
- C. H. Frazier and W. D. O'Brien, "Synthetic aperture techniques with a virtual source element," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 196-207 (1998). https://doi.org/10.1109/58.646925
- M. Li, W. Guan, and P. Li, "Improved synthetic aperture focusing technique with applications in highfrequency ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51, 63-70 (2004). https://doi.org/10.1109/TUFFC.2004.1268468
- J. Opretzka, M. Vogt, and H. Ermert, "A high frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 1355-1365 (2011). https://doi.org/10.1109/TUFFC.2011.1955
- M. H. Bae and M. K. Jeong, "Bidirectional pixel based focusing in conventional B-mode ultrasound imaging," Electronics Letters, 34, 2105-2107 (1998). https://doi.org/10.1049/el:19981484
- M. H. Bae and M. K. Jeong, "A study of synthetic-aperture imaging with virtual source elements in Bmode ultrasound imaging systems," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47, 1510-1519 (2000). https://doi.org/10.1109/58.883540
- R. T. Hoctor, D. J. Buckton, S. Jagannathan, M. P. Mienkina, and J. Jin, "Systems and methods for ultrasound retrospective transmit focus beamforming," U.S. Patent, 9 366 753 B2, 2015.
- O. M. H. Rindal, A. Rodriguez-Molares, and A. Austeng, "A simple, artifact-free, virtual source model," Proc. IEEE Ultrason. Symp. (2018).
- J. Kortbek, J. A. Jensen, and K. L. Gammelmark, "Synthetic aperture sequential beamforming", Proc. IEEE Int. Ultrason. Symp. 966-969 (2008).
- T. D. Ianni, C. A. V. Hoyos, C. Ewertsen, T. K. Kjeldsen, J. Mosegaard, M. B. Nielsen, and J. A. Jensen, "A vector flow imaging method_for portable ultrasound using synthetic aperture sequential beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 1655-1665 (2017). https://doi.org/10.1109/TUFFC.2017.2742599
- M. K. Jeong, K. J. Lee, M. H. Bae, S. Y. Chang, and S. B. Gye, "Beamforming using the synthetic sinc wave for ultrasonic imaging system," Proc. IEEE Ultrason. Symp. 1539-1542 (2001).
- J. H. Chang, J. W. Park, and T. K. Song, "A new synthetic aperture focusing method using nonspherical wave fronts," Proc. IEEE Ultrason. Symp. 1525-1528 (2001).
- G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 489-506 (2009). https://doi.org/10.1109/TUFFC.2009.1067
- J. H. Chang and T. K. Song, "A new synthetic aperture focusing method to suppress the diffraction of ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 327-337 (2011). https://doi.org/10.1109/TUFFC.2011.1810
- Q. You, Z. Dong, M. R. Lowerison, and P. Song, "Pixel-oriented adaptive apodization for plane-wave imaging based on recovery of the complete dataset," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 69, 512-522 (2022). https://doi.org/10.1109/TUFFC.2021.3124821
- T. Stepinski and F. Lingvall, "Optimized algorithm for synthetic aperture imaging," Proc. IEEE Ultrason. Symp. 701-704 (2004).
- H. J. Vos, P. L. M. J. van Neer, M. M. Mota, M. D. Verweij, A. F. W. van der Steen, and A. W. F. Volker, "F-k domain imaging for synthetic aperture sequential beamforming," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 60-71 (2016). https://doi.org/10.1109/TUFFC.2015.2499839
- E. Moghimirad, C. A. V. Hoyos, A. Mahloojifar, B. M. Asl, and J. A. Jensen, "Synthetic aperture ultrasound Fourier beamformation using virtual sources," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 2018-2030 (2016). https://doi.org/10.1109/TUFFC.2016.2606878
- E. Shaswary, J. Tavakkoli, and J. C. Kumaradas, "Efficient frequency-domain synthetic aperture focusing techniques for imaging with a high-frequency single element focused transducer," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 57-70 (2019). https://doi.org/10.1109/tuffc.2018.2881726
- S. Chandramoorthi and A. K. Thittai, "ω-k algorithm for sparse-transmit sparse-receive diverging beam synthetic aperture transmit scheme," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 67, 2046-2056 (2020). https://doi.org/10.1109/tuffc.2020.2998802
- R. M. Lerner and R. C. Waag, "Wave space interpretation of scattered ultrasound," Ultrason. Med. Biol. 14, 97-102 (1988).
- W. F. Walker and G. E. Trahey, "The application of kspace in pulse echo ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 45, 541-558 (1998). https://doi.org/10.1109/58.677599
- K. L. Gammelmark and J. A. Jensen, "Duplex synthetic aperture imaging with tissue motion compensation," Proc. IEEE Ultrason. Symp. 1569-1573 (2003).
- M. H. Bae, B. S. Kim, M. K. Jeong, W. Y. Lee, J. H. Ham, D. Y. Kim, and H. W. Lee, "A new motion estimation and compensation method for real-time ultrasonic synthetic aperture imaging," Proc. IEEE Ultrason. Symp. 1511-1513 (2007).
- K. L. Gammelmark and J. A. Jensen, "2-D tissue motion compensation of synthetic transmit aperture images," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 61, 594-610 (2014). https://doi.org/10.1109/TUFFC.2014.2948
- M. H. Bae, B. S. Kim, M. K. Jeong, R. Y. Yoon, H. W. Lee, and Y. G. Kim, "A new architectural design of full aperture, full frame-rate synthetic aperture beamforming ASIC," Proc. IEEE Ultrason. Symp. 1508-1510 (2007).
- M. H. Bae, J. H. Ham, R. Y. Yoon, H. W. Lee, and M. K. Jeong, "A new ASIC architecture for ultrasonic synthetic aperture imaging system," Proc. IEEE Ultrason. Symp. 1346-1348 (2009).
- J. Amaro, B. Y. S. Yiu, G. Falcao, M. A. C. Gomes, and A. C. H. Yu, "Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 62, 862-870 (2015). https://doi.org/10.1109/TUFFC.2014.006938
- H. Y. Sohn, S. H. Seo, J.M. Kim, and T. K. Song, "Software implementation of ultrasound beamforming using ADSP-TS201 DSPs," Proc. of SPIE, 6920 (2008).
- C. J. Martin-Arguedas, D. Romero-Laorden, O. MartinezGraullera, M. Perez-Lopez, and L. Gomez-Ullate, "An ultrasonic imaging system based on a new SAFT approach and a GPU beamformer," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 1880-1887 (2012).
- T Di Ianni, M. C. Hemmsen, P. L. Muntal, I. H. H. Jorgensen, and J. A. Jensen, "System-level design of an integrated receiver front end for a wireless ultrasound probe," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 63, 1935-1946 (2016). https://doi.org/10.1109/TUFFC.2016.2594769
- J. W. Choe, A. Nikoozadeh, O. Oralkan, and B. T. Khuri-Yakub, "GPU-based real-time imaging software suite for medical ultrasound," Proc. IEEE Int. Ultrason. Symp. 2057-2060 (2013).
- T. Y. Phuong and J.-G. Lee, "Software based ultrasound B-mode/Beamforming optimization on GPU and its performance prediction," International Conference High Performance Computing (2014).
- H. K. H. So, J. Chen, B. Y. S. Yiu, and A. C. H. Yu, "Medical ultrasound imaging: To GPU or not to GPU?," Micro. IEEE, 31, 54-65 (2011). https://doi.org/10.1109/MM.2011.65
- S. I. Nikolov and J. A. Jensen, "In-vivo synthetic aperture flow imaging in medical ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 50, 848-856 (2003). https://doi.org/10.1109/TUFFC.2003.1214504
- I. K. Ekroll, M. M. Voormolen, O. K.-V. Standal, J. M. Rau, and L. Lovstakken, "Coherent compounding in Doppler imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 62, 1634-1643 (2015). https://doi.org/10.1109/TUFFC.2015.007010
- J. A. Jensen, "Estimation of high velocities in syntheticaperture imaging-Part I: Theory," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1024-1031 (2019). https://doi.org/10.1109/tuffc.2019.2906384
- J. A. Jensen, "Estimation of high velocities in syntheticaperture imaging-Part II: Experimental investigation," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1032-1038 (2019). https://doi.org/10.1109/tuffc.2019.2906390
- C. Golfetto, I. K. Ekroll, H. Torp, L. Lovstakken, and J. Avdal, "Retrospective transmit beamforming and coherent plane-wave compounding for microvascular Doppler imaging: A comparison study," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1105-1116 (2021). https://doi.org/10.1109/TUFFC.2020.3033719
- H. Andresen, S. I. Nikolov, and J. A. Jensen, "Precise time-of-flight calculation for 3-D synthetic aperture focusing," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 1880-1887 (2009). https://doi.org/10.1109/TUFFC.2009.1264
- H. Andresen, S. I. Nikolov, M. M. Pedersen, D. Buckton, and J. A. Jensen, "Three-dimensional synthetic aperture focusing using a rocking convex array transducer," Trans. Ultrason. Ferroelect. Freq. Contr. 57, 1051-1063 (2010). https://doi.org/10.1109/TUFFC.2010.1517
- Y. Li, M. C. Kolios, and Y. Xu, "3-D large-pitch synthetic transmit aperture imaging with a reduced number of measurement channels: A feasibility study," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1628-1640 (2021). https://doi.org/10.1109/TUFFC.2020.3043326
- J. Synnevag, A. Austeng, and S. Holm, "Adaptive beamforming applied to medical ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 54, 1606-1613 (2007). https://doi.org/10.1109/TUFFC.2007.431
- Y. Qi, Y. Wang, and W. Guo"Joint subarray coherence and minimum variance beamformer fo multitransmission ultrasound imaging modalities," IEEE Trans. Ultrason. Ferroelect. Ultrason. Ferroelect. Freq. Contr. 65, 1600-1617 (2018). https://doi.org/10.1109/TUFFC.2018.2851073
- Z. Lan, L. Jin, S. Feng, C. Zheng, Z. Han, and H. Peng, "Joint generalized coherence factor and minimum variance beamformer for synthetic aperture ultrasound imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1167-1183 (2021). https://doi.org/10.1109/TUFFC.2020.3035412
- H.-N. Lee, S.-I. Park, and S.-C. Park, "Introduction to compressed sensing" (in Korean), J. IEIE, 38, 19-30 (2011).
- D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, 52, 1289-1306 (2006). https://doi.org/10.1109/TIT.2006.871582
- J. Liu, Q. He, and J. Luo, "A compressed sensing strategy for synthetic transmit aperture ultrasound imaging," IEEE Trans. Medical Imaging, 36, 878-891 (2017). https://doi.org/10.1109/TMI.2016.2644654
- J. Liu, Q. He, and J. Luo, "Compressed sensing based synthetic transmit aperture imaging validation in a convex array configuration," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 65, 300-315 (2018). https://doi.org/10.1109/TUFFC.2017.2682180
- M. H. Bae, H. W. Lee, R. Y. Yoon, M. K. Jeong, and Y. G. Kim, "A new ultrasonic synthetic aperture tissue harmonic imaging system," Proc. IEEE Ultrason. Symp. 1258-1261 (2008).
- M. H. H. Varnosfaderani, B. M. Asl, and S. Faridsoltani, "An adaptive synthetic aperture method applied to ultrasound tissue harmonic imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 65, 557-569 (2018). https://doi.org/10.1109/tuffc.2018.2799870
- M. K. Jeong, "Medical ultrasonic elasticity imaging techniques" (in Korean), J. Korean Soc. Nondestruc. Test, 32, 573-584 (2012). https://doi.org/10.7779/JKSNT.2012.32.5.573
- R. Ahmed and M. M. Doyley, "Distributing synthetic focusing over multiple push-detect events enhances shear wave elasticity imaging performance," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 1170-1184 (2019). https://doi.org/10.1109/tuffc.2019.2911036
- M. Mirzaei, A. Asif, and H. Rivaz, "Virtual source synthetic aperture for accurate lateral displacement estimation in ultrasound elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 68, 1687-1695 (2021). https://doi.org/10.1109/TUFFC.2020.3046445
- A. C. Luchies and B. C. Byram, "Deep neural networks for ultrasound beamforming," IEEE Trans. Medical Imaging, 37, 2010-2021 (2018). https://doi.org/10.1109/tmi.2018.2809641
- R. Pandey, J. Kirchhof, F. Krieg, E. Perez, and F. Romer, "Preprocessing of freehand ultrasound synthetic aperture measurements using DNN," Proc. 29'th European Signal Processing Conf. 1402-1405 (2021).
- M. Gasse, F. Millioz, E. Roux, D. Garcia, H. Liebgott, and D. Friboulet, "High-quality plane wave compounding using convolutional neural networks," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 64, 1637-1639 (2017). https://doi.org/10.1109/TUFFC.2017.2736890
- N. Peretz and A. Feuer, "Deep learning applied to beamforming in synthetic aperture ultrasound," arXiv preprint arXiv:2011.10321 (2020).