• Title/Summary/Keyword: beam vibration

Search Result 2,136, Processing Time 0.026 seconds

Influence of Two Successively-moving Spring-mass Systems with Initial Displacement on Dynamic Behavior of a Simply-supported Beam Subjected to Uniformly Distributed Follower Forces (초기 변위를 가지고 연속 이동하는 스프링-질량계가 등분포종동력을 받는 단순지지보의 동특성에 미치는 영향)

  • 윤한익;강혁준;유진석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.202-209
    • /
    • 2003
  • A simply supported beam subjected to a uniformly distributed tangential follower force and the two successively moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between two successively moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simply supported beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simply supported beam without two successively moving spring-mass systems, and three kinds of constant velocities and constant initial displacement of two successively moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simply supported beam are inspected too. In this study the simply supported beam is deflected with small vibration proportional to natural frequency of the moving spring-mass systems. According to the increasing of initial displacement of the moving spring-mass systems the amplitude of the small vibration of the simply supported beam is increased due to the spring force. The velocity of the moving spring-mass system more affect on the transverse deflection of simply supported beam than other factors of the system and the effect is dominant at high velocity of the moving spring-mass systems.

Maneuvering and Active Vibration Control of Slewing Flexible Beam using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.701-706
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

  • PDF

Maneuvering and Active Vibration Control of Slewing Flexible Beam Using Input Shaper (입력성형기를 이용한 회전 유연보의 조종 및 진동제어)

  • Kwak, Moon-K.;Yang, Dong-Ho;Lee, Jae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.6
    • /
    • pp.542-549
    • /
    • 2012
  • This research is concerned with the derivation of equations of motion for a slewing beam and the application of input shaper to the bang-bang control to achieve vibration suppression. When a uniform beam with a tip mass rotates about the axis perpendicular to the undeformed beam's longitudinal axis, it experiences inertial loading. Hence, the beam vibrates. In this paper, we used the input shaper for the maneuvering control to suppress vibrations. The maneuvering control which can achieve a minimum-time control is a bang-bang control. The input-shaped bang-bang maneuvering is used to suppress vibrations both theoretically and experimentally. The slewing beam experiment is not an easy subject because of the inherent damping existing inside the rotor. We propose the use of a negative damping to eliminate the rotor damping. Numerical and experimental results show that the input-shaper can be effectively used for the vibration suppression of a slewing beam.

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.259-270
    • /
    • 2017
  • The stochastic vibration response of the sandwich beam with the nonlinear adjustable visco-elastomer core and supported mass under stochastic support motion excitations is studied. The nonlinear dynamic properties of the visco-elastomer core are considered. The nonlinear partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived. An analytical solution method for the stochastic vibration response of the nonlinear sandwich beam is developed. The nonlinear partial differential equations are converted into the nonlinear ordinary differential equations representing the nonlinear stochastic multi-degree-of-freedom system by using the Galerkin method. The nonlinear stochastic system is converted further into the equivalent quasi-linear system by using the statistic linearization method. The frequency-response function, response spectral density and mean square response expressions of the nonlinear sandwich beam are obtained. Numerical results are given to illustrate new stochastic vibration response characteristics and response reduction capability of the sandwich beam with the nonlinear visco-elastomer core and supported mass under stochastic support motion excitations. The influences of geometric and physical parameters on the stochastic response of the nonlinear sandwich beam are discussed, and the numerical results of the nonlinear sandwich beam are compared with those of the sandwich beam with linear visco-elastomer core.

Dynamic analysis of thin-walled open section beam under moving vehicle by transfer matrix method

  • Xiang, Tianyu;Xu, Tengfei;Yuan, Xinpeng;Zhao, Renda;Tong, Yuqiang
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.603-617
    • /
    • 2008
  • Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea of Newmark-${\beta}$ method, the partial differential equations of structural vibration can be transformed to the differential equations. Then, those differential equations are solved by transfer matrix method. An iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations. The accuracy of the presented method is verified through two numerical examples. Finally, with different eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling vibration of truck body are investigated. It can be concluded from the numerical results that the torsional vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it can be observed that the torsional vibration of thin-walled open section beam may have a significant nonlinear influence on vertical vibration of truck body.

Fuzzy Control of a Simply-Supported Beam under a Moving Mass (이동질량을 받는 단순지지보의 퍼지제어)

  • 공용식;류봉조;이규섭;류두현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.196-201
    • /
    • 2002
  • This paper deals with the active vibration control of a simply-supported beam under a Moving mass using fuzzy control technique. Governing equation3 for dynamic responses of the beam under a moving mass are derived by Galerkin's mode summation method. Dynamic responses of the beam are obtained by Runge-Kutta integration method, and are compared with experimental results. For the active vibration control of the beam due to moving mass, a controller based on fuzzy logic was designed. The numerical predictions for dynamic deflections of the beam have a good agreement with the experimental results well. As for the fuzzy control of the tested beam, more than 50% reductions of dynamic deflection and residual vibrations under a moving mass are demonstrated.

  • PDF

Vibration Analysis of a Beam Translating over Supports in Vertical Motion (수직운동하는 지지대 상에서 직진운동하는 보의 진동해석)

  • 정찬교;김창부
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.189-196
    • /
    • 1996
  • Vibration of a beam translating over supports in vertical motion is investigated in this paper. Equations of motion are formulated using the virtual work principle by regarding the supports as kinematical constraints imposed on an unrestrained beam and by discretizing the beam via the assumed mode method. Differential-algebraic equations of motion are derived and reduced to differential equations in independent generalized coordinates by the generalized coordinate partitioning method. Geometric stiffness of the beam due to translating motion is considered and how the geometric stiffness of beam affects dynamic stability is also investigated. Instability of the beam. in various conditions is also investigated using Floquet theory and then the results are verified through the dynamic response analysis. Results of numerical simulation are presented for various prescribed motions of the beam.

  • PDF

Residual Vibration Suppression of a Piezoelectric Beam Using a Self-sensing Technology (자기계측 기능을 이용한 압전 빔의 잔류진동 제어)

  • Nam, Yoon-Su;Jang, Hu-Yeong;Park, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.67-75
    • /
    • 2007
  • This paper deals with a problem of vibration suppression of a piezoelectric beam using a self-sensing algorithm. Two methods, which are PPF(positive position feedback) and SRF(strain rate feedback), are considered to suppress a residual vibration of a piezoelectric beam developed during the step positioning of a beam end point. A self-sensing algorithm treated here is basically a strain rate estimator of a beam movement and is to be used for the closed loop control. The efficacy of the proposed idea is evaluated through experiments.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

Forced Vibration Analysis of Damped Composite Beam (복합단면 감쇠보의 강제진동해석)

  • Won, Sung-Gyu;Jung, Weui-Bong;Bae, Soo-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.411-414
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with arbitrary section was analyzed. The damping material was assumed to have either complex shear modulus or complex Young???smodulus. Damped composite beam could be modeled using beam elements with less D.O.F. rather than solid elements. Finite element method for these methods was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in several beam structures.

  • PDF