• Title/Summary/Keyword: beam energy distribution

Search Result 327, Processing Time 0.027 seconds

Characteristics of spatial distribution of cold cathode type large aperture electron beam (냉음극형 대면적 전자빔의 공간적 분포 특성)

  • Woo, S.H.;Abroyan, M.;Cho, C.H.;Kim, G.H.;Lee, H.S.;Rim, G.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF

Development of Ion Beam Monte Carlo Simulation and Analysis of Focused Ion Beam Processing (이온빔 몬테 카를로 시물레이션 프로그램 개발 및 집속 이온빔 공정 해석)

  • Kim, Heung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.479-486
    • /
    • 2012
  • Two of fundamental approaches that can be used to understand ion-solid interaction are Monte Carlo (MC) and Molecular Dynamic (MD) simulations. For the simplicity of simulation Monte Carlo simulation method is widely preferred. In this paper, basic consideration and algorithm of Monte Carlo simulation will be presented as well as simulation results. Sputtering caused by incident ion beam will be discussed with distribution of sputtered particles and their energy distributions. Redeposition of sputtered particles that are experienced refraction at the substrate-vacuum interface additionally presented. In addition, reflection of incident ions with reflection coefficient will be presented together with spatial and energy distributions. This Monte Carlo simulation will be useful in simulating and describing ion beam related processes such as Ion beam induced deposition/etching process, local nano-scale distribution of focused ion beam implanted ions, and ion microscope imaging process etc.

Radiotherapy Treatment Planning using Computed Tomography in Breast Cancer (유방암에서 CT planning를 이용한 치료계획)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 1992
  • Carcimoma of the breast are first frequency malignancy in women in the world. third frequency in Korea. Radiation therapy in breast cancer were treated through opposed tangential fields with photon beam or electron beam. Density within the field and thickness to tumor are very importent factors determining dose distribution in radiation therapy of electron beam. Radiotherapy traetment planning using computed tomography in Breast cancer are able to ideal dose distribution. Authors concluded as following. 6MeV energy of electron beam propered below 1.5cm in chest wall's thickness or internal mammary lymphnode's depth. 9MeV energy of electron beam from 1.5cm to 2.0cm. 12 MeV energy of electron beam from 2.0cm to 2.5cm.

  • PDF

A study for prediction of temperature distribution in laser-assisted turning for rod-shaped cast iron (레이저 보조선삭 중 주철환봉 내부의 온도분포 예측에 관한 연구)

  • Kim, Kwan-Woo;Cho, Hae-Yong;Lee, Jae-Hoon;Suh, Jeong;Shin, Dong-Sig
    • Laser Solutions
    • /
    • v.13 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • Laser-assisted machining is dependent on absorbed energy density into workpiece. Generally, the absorptivity of laser beam is dependent on wave length of laser, materials, surface roughness, etc. Various shapes and energy densities for beam irradiation can be used to laser-assisted machining. In this thesis, efficient method of heat source modeling was developed and designed by using one fundamental experimental trials. And then, laser-assisted machining of rod-shaped cast iron was simulated by using commercial FEM code MARC. Simulations and experiments with various conditions were carried out to determine suitable condition of pre-heating for laser-assisted turning process. Temperature distribution of cutting zone could be predicted by simulation.

  • PDF

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

The Study on BEAM for the Space Domain Analysis of EEG

  • Lee, Gun-Ki;Kang, Ik-Tae;Shin, Sang-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.129-134
    • /
    • 1994
  • In this paper, computerized BEAM was implemented for the space domain analysis of EEG. Transformation from temporal summation to two-dimensional mappings is formed by 4 nearest point interpolaton method. Methods of representation of BEAM are two. One is dot density method which classify brain electrical potential 9 levels by dot density of gray levels and the other is colour method which classify brain electrical 12 levels by red-green colours. In this BEAM, instantaneous change and average energy distribution over any arbitrary time interval of brain electrical activity could be observed and analyzed easily. In the frequency domain, the distribution of energy spectrum of a special band can easily be distinguished normality and abnormality.

  • PDF

The Dose Distribution of Arc therapy for High Energy Electron (고에너지 전자선 진자조사에 의한 선량분포)

  • Chu, S.S.;Kim, G.E.;Suh, C.O.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • The treatment of tumors along curved surfaces with stationary electron beams using cone collimation may lead to non-uniform dose distributions due to a varying air gap between the cone surface and patient. For large tumors, more than one port may have to be used in irradiation of the chest wall, often leading to regions of high or low dose at the junction of the adjacent ports. Electron-beam arc therapy may elimination many of these fixed port problems. When treating breast tumors with electrons, the energy of the internal mammary port is usually higher than that of the chest wall port. Bolus is used to increase the skin dose or limit the range of the electrons. We invertiaged the effect of various arc beam parameters in the isodose distributions, and combined into a single arc port for adjacent fixed ports of different electron beam eneries. The higher fixed port energy would be used as the arc beam energy while the beam penetration in the lower energy region would be controlled by a proper thickness of bolus. We obtained the results of following: 1. It is more uniform dose distribution of electron to use rotation than stationary irradiation. 2. Increasing isocenter depth on arc irradiation, increased depth of maximum dose, reduction in surface dose and an increasing penetration of the linear portion of the curve. 3. The deeper penetration of the depth dose curve and higher X-ray background for the smaller field sized. 4. If the isocenter depth increase, the field effect is small. 5. The decreasing arc beam penetration with decreasing isocenter depth and the isocenter depth effect appears at a greater depth as the energy increases. 6. The addition of bolus produces a shift in the penetration that is the same for all depths leaving the shape of the curves unchanged. 7. Lead strips 5 mm thick were placed at both ends of the arc to produce a rapid dose drop-off.

  • PDF

High Energy Photon Beam Modeling Using Transport Theory for Calculation of Absorbed Dose Distribution (흡수 선량 분포의 수송방정식을 이용한 10 MV X-선의 모델)

  • Choi, Dong-Rak;Chun, Ha-Chung;Lee, Myung-Za
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.115-120
    • /
    • 1992
  • A mathematical model is presented for the calculation of the depth absorbed dose in water Phantom irradiated by high energy Photon beam (10MV X-ray), based on transport theory. The parameters of this model are obtained from the experimental values which were simulated by non-linear regression process method. The calculated absorbed dose distribution is extended to 3-D by using trial function from beam profile field sizes, SSD and depth in water phantom irradiated by high energy Photon beam. The calculated values using this model are in good agreement with the measured values.

  • PDF

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Calculation of Energy Spectra for Electron Beam of Medical Linear Accelerator Using GEANT4 (GEANT4를 이용한 선형가속기 기초 코드 작성과 전자선 에너지 분포 계산)

  • Joh, Young-Gull;Kim, Hyung-Dong;Kim, Byung-Young;Kim, Sung-Jin;Oh, Se-An;Kang, Jeong-Ku;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.22 no.2
    • /
    • pp.85-91
    • /
    • 2011
  • The energy spectra for electron beam of medical linear accelerator were calculated using a GEANT4 Medical Linac 2 example code. The incident electron mean energy were 6, 9, 12, 16, 20 MeV. This code was designed to calculate electron beam energy spectra according to material, thickness and location of electron scattering foil affecting electron beam characteristic. Lead, Copper, Aluminum and Gold were used for scattering foil. The energy distribution for electron and photon were analyzed by changing position of scattering foil in the head of linear accelerator. The effect of electron scattering foil on energy spectra which is basic data of simulation for medical linear accelerator were presented. The calculated results would be used in design of medical accelerator head.