• Title/Summary/Keyword: bcl-2 family

Search Result 228, Processing Time 0.077 seconds

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Antioxidant and Anticancer Activities of Euonymus porphyreus Extract in Human Lung Cancer Cells A549 (인체 폐암 세포주 A549에서 Euonymus porphyreus 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Bae, Soobin;Park, Jung-ha;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 2021
  • Euonymus porphyreus, a species of plant in the Celastraceae family, is widely distributed in East Asia, especially in Southern China. The botanical characteristics of E. porphyreus have been reported, but its antioxidative and anticancer activities remain unclear. In this study, we evaluated the antioxidative and anticancer effects of ethanol extracts of E. porphyreus (EEEP) and the molecular mechanism of its anticancer activity in human lung adenocarcinoma A549 cells. The total polyphenol and flavonoid compound contents from EEEP were 115.42 mg/g and 23.07 mg/g, respectively. EEEP showed significant antioxidative effects with a concentration at 50% of the inhibition (IC50) value of 11.09 ㎍/ml, as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. EEEP showed cytotoxic activity by increasing the SubG1 cell population of A549 cells in a dose-dependent manner. Apoptosis in A549 cells treated with EEEP was evident due to increased apoptotic cells and apoptotic bodies, as detected by Annexin V and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. EEEP-induced apoptosis resulted in increased expression of the First apoptosis signal (Fas), p53, and Bax, with decreased expression of Bcl-2 and subsequent activation of caspase-8, -9, and caspase-3, leading to cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that EEEP may exert an anticancer effect by inducing apoptosis in A549 cells through both intrinsic and extrinsic pathways.

Induction of Apoptosis by Methanol Extract of Endlicheria anomala in Human Lung and Liver Cancer Cells (Endlicheria anomala 메탄올 추출물에 의한 인체 폐암세포주와 간암세포주의 자가사멸 유도)

  • Park, Hyun-jin;Jin, Soojung;Oh, You Na;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2015
  • Endlicheria anomala, a neotropical plant, is found in northern South America and the Amazon region. It is traditionally used to remove poisons and cure gangrene. According to recent data, this plant has diverse biological properties such as anti-oxidative, anti-inflammatory and anti-melanogenic properties. However, the anti-cancer effect of E. anomala and its molecular mechanisms remain unclear. In this study, we examined the anti-cancer effect and the active mechanism of methanol extract of E. anomala (MEEA) in human lung adenocarcinoma cells (A549) and human liver cancer cells (HepG2). Our data revealed that MEEA showed cytotoxic activity in a dose-dependent manner and induced apoptosis both in A549 and HepG2 cells. We verified evidences of apoptosis via formation of chromatin condensation, apoptotic body and accumulation of cells in the subG1 phase. Following observed apoptosis-related phenomena, we found that the induction of apoptosis by MEEA was associated with the increase of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. Furthermore, MEEA-induced apoptosis was characterized with proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of pro-apoptotic Bax expression. Taken together, these findings indicate that MEEA may have potential cancer therapeutic utility in A549 and HepG2 cells.

Water Extract of Allium sativum L. Induces Apoptosis in Human Leukemia U937 Cells through Reactive Oxygen Species Generation (마늘 열수 추출물의 활성산소종 생성을 통한 인체백혈병세포의 apoptosis 유발)

  • Choi, Woo-Young;Chung, Kyung-Tae;Yoon, Tae-Kyung;Choi, Byung-Tae;Lee, Yong-Tae;Lee, Won-Ho;Ryu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1709-1716
    • /
    • 2007
  • The health benefits of garlic (Allium sativum L.) are derived from a wide variety of components and from the different ways it is administered. The known health benefits of garlic include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, protection against microbial, viral and fungal infections, as well as anticancer effects. In the present study, it was examined the effects of water extract of A. sativum (WEAS) on the growth of cultured human tumor cells in order to investigate its anti-proliferative mechanism. Treatment of WEAS to tumor cells resulted in the growth inhibition, especially in leukemia cells, which was associated with induction of G2/M arrest of the cell cycle and apoptosis. In order to further explore the critical events leading to apoptosis in WEAS-treated U937 human leukemia cells, the following effects of WEAS on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 and IAP family proteins. The cytotoxic effect of WEAS was mediated by its induction of apoptosis as characterized by the occurrence of DNA ladders, apoptotic bodies and chromosome condensation in U937 cells. The WEAS-induced apoptosis in U937 cells was correlated with the generation of intracellular ROS, collapse of MMP, activation of caspase-3 and down-regulation of anti-apoptotic proteins. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against WEAS-elicited ROS generation, caspase-3 activation, G2/M arrest and apoptosis. In conclusion, the present study reveals that the cellular ROS generation plays a pivotal role in the initiation of WEAS-triggered apoptotic death in U937 cells.

Sensitization of TNFα and Agonistic FAS/CD95 Antibody-Induced Apoptosis by INFγ on Neuroblastoma Cells (신경모세포종에서 IFNγ에 의한 TNFα와 길항적 FAS/CD95항체 유도성 세포고사의 감작화)

  • Bang, Ho Il;Kim, Jong Duck;Choi, Du Young
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.7
    • /
    • pp.702-709
    • /
    • 2003
  • Purpose : $IFN{\gamma}$ sentitizes many tumor cells to $TNF{\alpha}$ and FASL-mediated apoptosis by enhancing the expression of TNF or FAS/CD95 receptor and modulating the activation of caspase and Bcl-2 family. It has been reported that $IFN{\gamma}$ and $TNF{\alpha}$ synergistically caused differentiation and growth inhibition of neuroblastoma cells. Even though some neuroblastoma cell express FASR/FASL on the cell surface, they could not induce apoptosis by ligation of the FAS/CD95 receptor. But the treatment of $IFN{\gamma}$ is reported to induce apoptosis in some neuroblastoma cell lines through the CD95/CD95L autocrine circuit. In this study, we examined whether $IFN{\gamma}$ could affect $TNF{\alpha}$ and agonistic FAS/CD95 antibody(CH-11)-induced apoptosis against neuroblastoma cell lines that had shown diverse drug sensitivity and resistance. Methods : CHLA-15, CHLA-90 and LA-N-2 neuroblastoma cells were cultured in IMDM and treated with recombinant $IFN{\gamma}$, $TNF{\alpha}$ and CH-11 antibody. Cell viability was measured by DIMSCAN with a fluorescent calcein-AM. Apoptosis was analyzed through flow cytometry using Annexin V-PE and 7-ADD staining and confirmed by pancaspase and caspase-8 blocking experiments. The expression of TNF RI and FAS/CD95 receptor was evaluated by flow cytometry using the corresponding antibody and PE-conjugated secondary antibody. Results : $IFN{\gamma}$ or $TNF{\alpha}$ alone had no demonstrable cytotoxic effects, whereas both cytokines in combination induced apoptosis synergistically in CHLA-15 and CHLA-90 cells. Although there was no cytotoxicity with the ligation of CH-11 alone in CHLA-90 cells, pretreatment of $IFN{\gamma}$ increased the sensitivity of CH-11-mediated apoptosis. The expression of TNFRI and FAS/CD95R were non-specifically enhanced after treatment of $IFN{\gamma}$ without relation to sensitivity to $TNF{\alpha}$ and CH-11. This finding suggest up-regulation of both receptors may contribute to sensitization of $TNF{\alpha}$ and CH-11-mediated apoptosis by $IFN{\gamma}$ in only sensitive cell lines. Conclusion : $IFN{\gamma}$ induced sensitization of $TNF{\alpha}$ and agonistic FAS/CD95 antibody-mediated apoptosis on some neuroblastoma cells through up-regulation of TNFRI and FAS/CD95 receptor.

PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Son, Ora;Jo, Hyo Sang;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Yu, Yeon Hee;Kim, Duk-Soo;Cho, Sung-Woo;Kwon, Oh Shin;Cho, Yong-Jun;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.382-387
    • /
    • 2016
  • Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases.

Reactive oxygen species-dependent apoptosis induction by water extract of Citrus unshiu peel in MDA-MB-231 human breast carcinoma cells

  • Kim, Min Yeong;Choi, Eun Ok;HwangBo, Hyun;Kwon, Da He;Ahn, Kyu Im;Kim, Hong Jae;Ji, Seon Yeong;Hong, Su-Hyun;Jeong, Jin-Woo;Kim, Gi Young;Park, Cheol;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.129-134
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Although several recent studies have reported the anti-cancer effects of extracts or components of Citrus unshiu peel, which has been used for various purposes in traditional medicine, the molecular mechanisms for their effects remain unclear. In the present study, the anti-cancer activity of a water-soluble extract of C. unshiu peel (WECU) in MDA-MB-231 human breast carcinoma cells at the level of apoptosis induction was investigated. MATERIALS/METHODS: Cytotoxicity was evaluated using the MTT assay. Apoptosis was detected using DAPI staining and flow cytometry analyses. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, caspase activity and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results indicated that WECU-induced apoptosis was related to the activation of caspase-8, and -9, representative initiator caspases of extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3 accompanied by proteolytic degradation of poly(ADP-ribose) polymerase and down-regulation of the inhibitors of apoptosis protein family members. WECU also increased the pro-apoptotic BAX to anti-apoptotic BCL-2 ratio, loss of mitochondrial membrane potential and cytochrome c release from mitochondria to cytoplasm. Furthermore, WECU provoked the generation of ROS, but the reduction of cell viability and induction of apoptosis by WECU were prevented when ROS production was blocked by antioxidant N-acetyl cysteine. CONCLUSIONS: These results suggest that WECU suppressed proliferation of MDA-MB-231 cells by activating extrinsic and intrinsic apoptosis pathways in a ROS-dependent manner.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Apoptosis Induced by BARODON® in Human Gastric Cancer Cells (BARODON® 에 의한 Human Gastric Adenocarcinoma AGS 세포고사)

  • Jo Eun-Hye;Choi Soo-Il;Kim Soo-Rim;Cho Sung-Dae;Ahn Nam-Shic;Jung Ji-Won;Yang Se-Ran;Park Joon-Suk;Hwang Jae-Woong;Park Yong-Ho;Lee Yong-Soon;Kang Kyung-Sun
    • Toxicological Research
    • /
    • v.21 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • [ $BARODON^{(R)}$ ] is a multi-purpose, high functional alkali solution made by mixing and liquid-ionizing silicon, calcium, sodium, borax, organic carbon chemicals and silver. In this study, we have investigated the apoptotic potential and mechanistic insights of $BARODON^{(R)}$ in human gastric cancer cell line (AGS cells). In MTT assay, $BARODON^{(R)}$ reduced cell viability in AGS cells. Morphological features of apoptosis with marked cytoplasmic vacuolation and appearance of apoptotic peaks in flow cytometry were observed in AGS cells with$BARODON^{(R)}$ treatment. In addition, $BARODON^{(R)}$ induced apoptosis of stomach cancer cell is related to bax up-regulation, caspase 7 protease activation and subsequent cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that BARODON can induce the apoptosis of AGS cells through modulation of bcl-2 family and the activation of intrinsic caspase cascades, indicating that it is potentially useful as a anti-cancer agent.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.