• Title/Summary/Keyword: bayesian model

Search Result 1,332, Processing Time 0.027 seconds

A novel Metropolis-within-Gibbs sampler for Bayesian model updating using modal data based on dynamic reduction

  • Ayan Das;Raj Purohit Kiran;Sahil Bansal
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • The paper presents a Bayesian Finite element (FE) model updating methodology by utilizing modal data. The dynamic condensation technique is adopted in this work to reduce the full system model to a smaller model version such that the degrees of freedom (DOFs) in the reduced model correspond to the observed DOFs, which facilitates the model updating procedure without any mode-matching. The present work considers both the MPV and the covariance matrix of the modal parameters as the modal data. Besides, the modal data identified from multiple setups is considered for the model updating procedure, keeping in view of the realistic scenario of inability of limited number of sensors to measure the response of all the interested DOFs of a large structure. A relationship is established between the modal data and structural parameters based on the eigensystem equation through the introduction of additional uncertain parameters in the form of modal frequencies and partial mode shapes. A novel sampling strategy known as the Metropolis-within-Gibbs (MWG) sampler is proposed to sample from the posterior Probability Density Function (PDF). The effectiveness of the proposed approach is demonstrated by considering both simulated and experimental examples.

The effect investigation of the delirium by Bayesian network and radial graph (베이지안 네트워크와 방사형 그래프를 이용한 섬망의 효과 규명)

  • Lee, Jea-Young;Bae, Jae-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.911-919
    • /
    • 2011
  • In recent medical analysis, it becomes more important to looking for risk factors related to mental illness. If we find and identify their relevant characteristics of the risk factors, the disease can be prevented in advance. Moreover, the study can be helpful to medical development. These kinds of studies of risk factors for mental illness have mainly been discussed by using the logistic regression model. However in this paper, data mining techniques such as CART, C5.0, logistic, neural networks and Bayesian network were used to search for the risk factors. The Bayesian network of the above data mining methods was selected as most optimal model by applying delirium data. Then, Bayesian network analysis was used to find risk factors and the relationship between the risk factors are identified through a radial graph.

Uncertainty Analysis for Parameters of Probability Distribution in Rainfall Frequency Analysis by Bayesian MCMC and Metropolis Hastings Algorithm (Bayesian MCMC 및 Metropolis Hastings 알고리즘을 이용한 강우빈도분석에서 확률분포의 매개변수에 대한 불확실성 해석)

  • Seo, Young-Min;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.329-340
    • /
    • 2011
  • The probability concepts mainly used for rainfall or flood frequency analysis in water resources planning are the frequentist viewpoint that defines the probability as the limit of relative frequency, and the unknown parameters in probability model are considered as fixed constant numbers. Thus the probability is objective and the parameters have fixed values so that it is very difficult to specify probabilistically the uncertianty of these parameters. This study constructs the uncertainty evaluation model using Bayesian MCMC and Metropolis -Hastings algorithm for the uncertainty quantification of parameters of probability distribution in rainfall frequency analysis, and then from the application of Bayesian MCMC and Metropolis- Hastings algorithm, the statistical properties and uncertainty intervals of parameters of probability distribution can be quantified in the estimation of probability rainfall so that the basis for the framework configuration can be provided that can specify the uncertainty and risk in flood risk assessment and decision-making process.

Efficient Learning of Bayesian Networks using Entropy (효율적인 베이지안망 학습을 위한 엔트로피 적용)

  • Heo, Go-Eun;Jung, Yong-Gyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.31-36
    • /
    • 2009
  • Bayesian networks are known as the best tools to express and predict the domain knowledge with uncertain environments. However, bayesian learning could be too difficult to do effective and reliable searching. To solve the problems of overtime demand, the nodes should be arranged orderly, so that effective structural learning can be possible. This paper suggests the classification learning model to reduce the errors in the independent condition, in which a lot of variables exist and data can increase the reliability by calculating the each entropy of probabilities depending on each circumstances. Also efficient learning models are suggested to decide the order of nodes, that has lowest entropy by calculating the numerical values of entropy of each node in K2 algorithm. Consequently the model of the most suitably settled Bayesian networks could be constructed as quickly as possible.

  • PDF

Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics (공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계)

  • Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.421-430
    • /
    • 2006
  • In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.

Determining the adjusting bias in reactor pressure vessel embrittlement trend curve using Bayesian multilevel modelling

  • Gyeong-Geun Lee;Bong-Sang Lee;Min-Chul Kim;Jong-Min Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2844-2853
    • /
    • 2023
  • A sophisticated Bayesian multilevel model for estimating group bias was developed to improve the utility of the ASTM E900-15 embrittlement trend curve (ETC) to assess the conditions of nuclear power plants (NPPs). For multilevel model development, the Baseline 22 surveillance dataset was basically classified into groups based on the NPP name, product form, and notch orientation. By including the notch direction in the grouping criteria, the developed model could account for TTS differences among NPP groups with different notch orientations, which have not been considered in previous ETCs. The parameters of the multilevel model and biases of the NPP groups were calculated using the Markov Chain Monte Carlo method. As the number of data points within a group increased, the group bias approached the mean residual, resulting in reduced credible intervals of the mean, and vice versa. Even when the number of surveillance test data points was less than three, the multilevel model could estimate appropriate biases without overfitting. The model also allowed for a quantitative estimate of the changes in the bias and prediction interval that occurred as a result of adding more surveillance test data. The biases estimated through the multilevel model significantly improved the performance of E900-15.

Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM (FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.562-567
    • /
    • 2009
  • As a key mechanism of the human emotion interaction, Facial Expression is a powerful tools in HRI(Human Robot Interface) such as Human Computer Interface. By using a facial expression, we can bring out various reaction correspond to emotional state of user in HCI(Human Computer Interaction). Also it can infer that suitable services to supply user from service agents such as intelligent robot. In this article, We addresses the issue of expressive face modeling using an advanced active appearance model for facial emotion recognition. We consider the six universal emotional categories that are defined by Ekman. In human face, emotions are most widely represented with eyes and mouth expression. If we want to recognize the human's emotion from this facial image, we need to extract feature points such as Action Unit(AU) of Ekman. Active Appearance Model (AAM) is one of the commonly used methods for facial feature extraction and it can be applied to construct AU. Regarding the traditional AAM depends on the setting of the initial parameters of the model and this paper introduces a facial emotion recognizing method based on which is combined Advanced AAM with Bayesian Network. Firstly, we obtain the reconstructive parameters of the new gray-scale image by sample-based learning and use them to reconstruct the shape and texture of the new image and calculate the initial parameters of the AAM by the reconstructed facial model. Then reduce the distance error between the model and the target contour by adjusting the parameters of the model. Finally get the model which is matched with the facial feature outline after several iterations and use them to recognize the facial emotion by using Bayesian Network.

Bayesian Network Model for Human Fatigue Recognition (피로 인식을 위한 베이지안 네트워크 모델)

  • Lee Young-sik;Park Ho-sik;Bae Cheol-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.887-898
    • /
    • 2005
  • In this paper, we introduce a probabilistic model based on Bayesian networks BNs) for recognizing human fatigue. First of all, we measured face feature information such as eyelid movement, gaze, head movement, and facial expression by IR illumination. But, an individual face feature information does not provide enough information to determine human fatigue. Therefore in this paper, a Bayesian network model was constructed to fuse as many as possible fatigue cause parameters and face feature information for probabilistic inferring human fatigue. The MSBNX simulation result ending a 0.95 BN fatigue index threshold. As a result of the experiment, when comparisons are inferred BN fatigue index and the TOVA response time, there is a mutual correlation and from this information we can conclude that this method is very effective at recognizing a human fatigue.

Direction of Arrival Estimation for Desired Target to Remove Interference and Noise using MUSIC Algorithm and Bayesian Method (베이즈 방법과 뮤직 알고리즘을 이용한 간섭과 잡음제거를 위한 원하는 목표물의 도래방향 추정)

  • Lee, Kwan-Hyeong;Kang, Kyoung-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.400-404
    • /
    • 2015
  • In this paper, we study for direction of arrival MUSIC spatial spectrum algorithm in order to desired signal estimation in spatial. Proposal MUSIC spatial spectrum algorithm in paper use model error and Bayesian method to estimation on correct target position. Receiver array response vector using adaptive array antenna use Bayesian method, and target position estimate to update weight value with model error method. Target's signal estimation of desired direction of arrival in this paper apply weight value of signal covariance matrix for array response vector after removing incident signal interference and noise, respectively. Though simulation, we analyze to compare proposed method with general method.

An Information-based Forecasting Model for Project Progress and Completion Using Bayesian Inference

  • Yoo, Wi-Sung;Hadipriono, Fabian C.
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.203-213
    • /
    • 2007
  • In the past, several construction projects have exceeded their schedule resulting in financial losses to the owners; at present there are very few methods available to accurately forecast the completion date of a project. These nay be because of unforeseen outcomes that cannot be accounted for earlier and because of deficiency of proper tools to forecast completion date of said project. To overcome these difficulties, project managers may need a tool to predict the completion date at the early stage of project development. Bayesian Inference introduced in this paper is one such tool that can be employed to forecast project progress at all construction stages. Using this inference, project managers can combine an initially planned project progress (growth curve) with reported information from ongoing projects during the development, and in addition, dynamically revise this initial plan and quantify the uncertainty of completion date. This study introduces a theoretical model and proposes a mathematically information-based framework to forecast a project completion date that corresponds with the actual progress data and to monitor the modified uncertainties using Bayesian Inference.