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a b s t r a c t

A sophisticated Bayesian multilevel model for estimating group bias was developed to improve the utility
of the ASTM E900-15 embrittlement trend curve (ETC) to assess the conditions of nuclear power plants
(NPPs). For multilevel model development, the Baseline 22 surveillance dataset was basically classified
into groups based on the NPP name, product form, and notch orientation. By including the notch di-
rection in the grouping criteria, the developed model could account for TTS differences among NPP
groups with different notch orientations, which have not been considered in previous ETCs. The pa-
rameters of the multilevel model and biases of the NPP groups were calculated using the Markov Chain
Monte Carlo method. As the number of data points within a group increased, the group bias approached
the mean residual, resulting in reduced credible intervals of the mean, and vice versa. Even when the
number of surveillance test data points was less than three, the multilevel model could estimate
appropriate biases without overfitting. The model also allowed for a quantitative estimate of the changes
in the bias and prediction interval that occurred as a result of adding more surveillance test data. The
biases estimated through the multilevel model significantly improved the performance of E900-15.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction develop an elaborate model [1e4]. As the operation time of NPPs
The integrity of the reactor pressure vessel (RPV) in a nuclear
power plant (NPP) is affected by irradiation embrittlement owing
to neutrons generated during NPP's operation. Irradiation embrit-
tlement of the RPV material is quantitatively evaluated using a
surveillance test program. In the surveillance program, specimens
made from the RPV material are stored in 4e5 capsules and sub-
jected to high neutron flux during irradiation at specific locations
between the nuclear fuel and the RPV. Over time, the capsules are
removed individually to evaluate the mechanical properties of the
irradiated specimens. The transition temperature shift (TTS),
calculated as the difference in the Charpy impact test results be-
tween the unirradiated and irradiated specimens, is a key indicator
of the RPV material's susceptibility to irradiation embrittlement.

To accurately predict the TTS of RPV materials in a NPP over the
course of its life, it is crucial to develop an embrittlement trend
curve (ETC) that considers the initial material properties of the RPV
and operating conditions. In the early days of NPP construction, the
surveillance test results of RPV materials were insufficient to
by Elsevier Korea LLC. This is an
gradually increased, surveillance test data also increased, and
various ETCs were developed through statistical modeling or
modeling based on the irradiation mechanism of RPV steels [5e8].
The ASTM E900-15 ETC, announced in 2015 [9], is a statistical
nonlinear regression model that incorporates the irradiation
damage on the matrix phase and the accumulation of Cu pre-
cipitates in RPV steel. It showed superior predictive performance
compared to other ETCs. Recently, many elaborate models using
machine learning with accumulated data have been introduced
[10,11]. However, it is difficult to precisely determine the internal
structure of a machine learning model, and extrapolation over time
can introduce significant errors. Therefore, nonlinear models are
preferred for use as regulatory ETCs.

Despite the excellent predictive performance of the entire range
of surveillance test data in current ETCs, many factors can affect
radiation embrittlement, and not all of them are included even in a
modern ETC, such as E900-15. To increase the applicability of NPP
regulation, E900e15 may require two additional considerations.
First, more attention is required for the heat-based prediction of
TTS. From a regulatory perspective, the integrity of an NPP is
fundamentally dependent on the surveillance test results of an
individual NPP. Therefore, a guideline for applying ETC to individual
NPPs is required, in addition to finding trends for the entire
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surveillance test data. The second concern is that the unirradiated
Charpy transition temperature may continuously affect the subse-
quent TTS results in NPP materials. The unirradiated Charpy tran-
sition temperature at 41J was used as a reference point for the TTS
group, which is expressed as follows:

TTSi ¼ Ti41J � Tunirradiated41J

�
i ¼ 1; 2; 3;/

�
(1)

where i denotes the i-th surveillance test in the groups of an NPP.
Even specimens manufactured from the same heat may have var-
iations in the Charpy transition temperature owing to composi-
tional non-uniformity and errors in the measurement process, and
these variations arising from unirradiated specimens will affect the
successive results of subsequent TTS measurements.

To address these drawbacks, ETC researchers have proposed
introducing a bias or slope to the E900-15 global trend according to
the amount of surveillance test data in the individual heat of an NPP
[12e14]. This approachwas simple and effective in bridging the gap
between global-trending ETC and plant-specific trends. However,
the bias adjustment was insufficient when there were fewer than
three surveillance test results in an NPP, and the distribution of
biases across the overall RPV remains to be determined.

This study introduced a grouping variable that included the NPP
name, heat informationwith product form and notch orientation in
the accumulated surveillance test data to calculate the biases of the
groups. This grouping variable allowed the TTS data of individual
plants to be grouped together with the same unirradiated Charpy
transition temperature. Group biases of the global trend E900-15 in
NPPs were estimated with a Bayesian multilevel model [15] using
the Markov Chain Monte Carlo (MCMC) method [16], and the dis-
tribution of estimated group biases was analyzed quantitatively.
The model performance was measured and compared with that of
E900-15 ETC. The change in prediction interval according to the
addition of the surveillance test data was measured. This paper
briefly discusses future research.
Table 1
Summary of the Baseline22 dataset.

Variable Unit Minimum Median Mean Maximum

TTS �C �28.9 33.0 42.0 253.0
Cu wt% 0.01 0.09 0.11 0.41
Ni wt% 0.04 0.64 0.62 1.70
Mn wt% 0.58 1.36 1.33 1.98
P wt% 0.0015 0.0100 0.0108 0.0240
Temperature �C 255 286 285 304
Fluence 1019 n/cm2 0.001 1.250 1.988 21.428
Product form Plate (SRM), forging, weld

Total datapoints: 2044.
No. of groups: 677.
No. of nations: 15.
2. Methodology

2.1. Dataset

The dataset used in this study was Baseline22, which was
embedded in Plotter-22, an ETC evaluation software provided by
the ASTM Committee E10.02, in 2022. Plotter-22 is a successor to
Plotter-15 [9], which was developed to analyze the ASTM E900-15
database containing a collection of surveillance test data from
pressurized water reactors (PWRs) and boiling water reactors
worldwide. Baseline22 includes RPV surveillance test results after
2015 and corrects some data from the Plotter-15 dataset.

As mentioned in the introduction, this study aims to group data
with the same unirradiated Charpy transition temperature for each
NPP and to calculate an appropriate bias that can reduce the error
between the global and plant-specific trends. Baseline22 includes
much information to group data, but the unirradiated Charpy tran-
sition temperatures still need to be reported. However, even if the
exact unirradiated Charpy characteristics are unknown, data
grouping is possible using NPP information, material product forms,
and notch orientation of the Charpy specimens. The operating
temperature and irradiation flux are generally similar in the same
NPP, and the composition of materials in the NPP is mostly the same,
depending on the product form. Therefore, when there is data with
the same product form of the same NPP, it becomes a highly related
group. Notch orientation was also considered because the Charpy
transition temperatures can vary considerably depending on the
notch orientation when performing the Charpy impact test.

Baseline22 has a column “material lookup,” a key column that
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distinguishes the NPP name and product form. We created a new
column by combining the material lookup and notch orientation
columns. In the case of the notch orientation column, there were
records with missing values. In these cases, we imputed it as an
unknown. For example, in South Korea's Kori Unit 1, the data can be
divided into three groups: KO1eF1-LT, KO1eF1-TL, and KO1eW1-
LT. The first key in this grouping represents the unit name, the
second key is the product formwith a composition number, and the
third represents the specimen direction. Generally, product forms
are composed of a base metal and aweld metal in a plant, but some
plants may have multiple base or weld metals, so a component
number is added to distinguish them. Group IDs were created from
this column by numbers assigned in ascending order based on the
country. Through this process, all the data were assigned to a single
group, and all the TTS data in a particular groupwere assumed to be
associated with the same unirradiated transition temperature.

There were also many data points from Standard Reference Ma-
terial (SRM) specimens irradiated with the same material at various
NPPs, containing high-dose irradiation effects. SRM grouping was
performed similarly to the process for the other data points, except
that the NPP namewas replaced with SRM. The total number of data
points was 2044, and the number of groups was 677.

For regulatory purposes, validation of the data grouping is
required to obtain accurate parameters for each group. However, as
this study aims to prove the utility of the multilevel model, the
grouped dataset verification is left for future research. Table 1
summarizes the grouped datasets. The range of data provides
estimation coverage for the developed multilevel model.
2.2. Modeling

The E900-15 ETC was used to represent the global trend for all
the data in the grouped dataset. The residuals were calculated using
the difference between the measured and predicted TTS from
E900-15. To minimize the between- and within-group residuals,
three model parametersdthe group bias mean, group bias stan-
dard deviation (SD), and within-group SDdwere estimated with a
Bayesian multilevel model using the MCMC technique [16].
Notably, MCMC is an advanced technique for obtaining the pa-
rameters of statistical models and can be briefly summarized as
follows: A new parameter sample was created using random
numbers, evaluated with the measured data, and accepted if it was
an appropriate model parameter. The representative values and
distributions of the model parameters can be estimated quantita-
tively as the sample collection gets large.

In this study, a multilevel model was fitted using R [17] and the
brms package [18]. The fit generated 20,000 samples in approxi-
mately 2 min using the latest type of personal computer with eight
cores, and the model size was approximately 200 MB. The model
parameters were calculated to two decimal places in this study. The
results may vary slightly depending on the random seed and the
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calculation platform of the MCMC. A detailed description of the
statistical model formula is provided in the results section.
3. Results

3.1. Necessity of group bias

The E900-15 ETC is a model that uses complete pooling of the
entire data, ignoring the group information present in the sur-
veillance test data. Complete pooling captures the overall trend of
the data and is generally used when the amount of data within an
individual group is limited. In the early days of ETC development,
complete pooling was necessary because the amount of surveil-
lance test data collected inmost plants was small. Themodel can be
expressed by a simple statistical formula as follows:

y ¼ f ðx; qÞ þ ε

ε � Normalð0; sÞ (2)

where y is the response variable, f is a nonlinear function repre-
senting the global trend, x is a vector of features or predictor vari-
ables, q is a parameter vector of f , and ε is assumed to be a normal
distributionwith a mean of zero and SD s. In this study, y is the TTS,
f is the E900-15model, x is a vector of seven feature variables, and q

is composed of the 26 parameters of E900-15. The seven feature
variables are the product form, Cu, Ni, Mn, P, temperature, and
irradiation fluence.

When the data are divided into groups, the TTSs for a particular
group often found to show a systematic deviation from the pre-
dictions of the ETC. This is illustrated in Fig. 1 for the data groups
related to Korean PWRs. Fig. 1 shows the change in TTS according to
the irradiation amount, and the upper panels of Fig. 1 show the
cases with several surveillance test results. The data points in the
KR0005 group agreed with the predicted values of the E900-15.
However, there were systematic deviations over 1 SD from E900-
15 in the KR0001 and KR0002 groups. KR0001 and KR0002 were
cases in which only the notch direction of the specimen was
different in LT and TL under the same forge material and irradiation
conditions of the same NPP. In the case of forgings and plates, there
may be significant variations in the Charpy impact properties
depending on the specimen orientation. Therefore, the specimen
orientation should be indicated in the surveillance test [19,20].

E900-15, indicated by the black line, predicted the same value
for both groups because E900-15 did not consider the specimen
notch orientation. This result is an example of a contrasting trend
based on the notch direction of the specimen. The lower panels of
Fig. 1 show the groups that underwent only one surveillance test.
Data points significantly different from the predictions of E900-15,
such as KR0022, were noted.

The distribution of the data in Fig. 1 suggests that deviations
from the predictions by E900-15 can be treated as varying in-
tercepts or biases. The dotted red line in Fig. 1 is the E900-15 pre-
diction curve, which introduces a bias bi that minimizes the
residuals between the measured data points and the E900-15
predictions. The model can be expressed as follows:

yij ¼ f
�
xij; q

� þ bi þ εij
bi ¼ constant with group i
εij � Normalð0; sÞ
i ¼ 1; /; M
j ¼ 1; /; N

(3)

where i is the group index, j is the index of the data in the group,M
is the total number of groups, N is the number of data points in the
group, and bi is the common bias of group i, which minimizes the
2846
residuals (that is, errors between the measured data and the E900-
15 predictions in the group). Further, εij represents the error of each
data. Each group has a group bias bi, and this case is known as no
pooling. It is rational to have a bias bi for each group, considering
the characteristics of TTS. The bias relieves the uncertainty of un-
irradiated Charpy impact properties and group-specific errors,
which can increase the goodness of fit of E900-15.

Fig. 2 shows the bias bi for each group in the Korean surveillance
test data. The gray points are the residuals between the measured
values and the E900-15 predictions, and the red point is the bi per
group thatminimizes the residuals within the group, which is equal
to the intercept value of the red line in Fig. 1. There were many
groups whose predicted values of E900-15 were smaller than the
measured data, implying that E900-15 might underestimate and
produce non-conservative predictions for these groups.

Calculating the bias independently for each group presents both
advantages and disadvantages. When sufficient data points, such as
three or more, are available for each group, group bias can be easily
estimated by minimizing the residuals between global trends and
measurements within the group. However, when only one or two
surveillance test results are available, it can be challenging to accu-
rately determine whether group bias is based on data within the
group or is a result of TTS measurement errors. The inability to
calculate reliable bias until several surveillance tests are performed is
a significantdisadvantage.Anotherdisadvantageof nopoolingofdata
is that bi calculated independently for each group does not affect the
calculation of the bias of other groups. A model that adequately
represents the distribution of bias across all groups is required.
3.2. Multilevel model with partial pooling of data

Partial pooling is an effective method for reconciling the global
trends obtained through complete pooling with plant-specific
trends derived from group data. This approach incorporated a
weighting system based on the quantity of data available for each
group. Specifically, when the amount of data in a group is sufficient,
the final estimate becomes closer to the no pooling estimate.
Conversely, when data are limited, complete pooling estimates
constitute a significant proportion of the final estimate [15].

A multilevel model is based on the partial pooling of data and
calculates the errors of the model by dividing them into fixed and
random effects. Here, the fixed effect represents the tendency of all
the data, and the random effect is the tendency of each group.
Assuming that the group bias bi is a normal distribution, the
multilevel model can be expressed by the following statistical
model formula:

yij ¼ f
�
xij; q

� þ bi þ εij
bi � Normalðb0; sbÞ
εij � Normalð0; sÞ
i ¼ 1;/; M
j ¼ 1;/; N

(4)

Note that bi is a normal distribution with mean b0 and SD sb.
Two approaches have been proposed to estimate the model pa-
rameters and the group bias bi. The first is the traditional method,
where parameters are obtained through an optimization technique
such as maximum likelihood or restricted maximum likelihood.
This method, generally known as the frequentist approach, can
produce results in a relatively short amount of time. However, it
requires a complicated procedure to calculate the statistical interval
of group bi, and the interpreting each statistical interval can be
complicated. Additionally, fitting a complex multilevel model may
result in difficulties in converging the parameter values.

The second method is the Bayesian regression method, which



Fig. 1. TTS change with fluence in the selected data groups from Korean surveillance data. The black dots are the measured data. The black lines are the predicted value of E900-15,
and the gray sections are the SD of E900-15. The red dashed lines are the trend line moved by the bias that minimizes the residuals.

Fig. 2. Residuals and group bias in the Korean data groups. The black points represent
the measured TTS, and the red points represent the no pooling bias that minimizes a
group's residuals.
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employs the MCMC method. The difference between the two ap-
proaches is based on a statistically complex explanation [15].
However, from the perspective of statistical applications, Bayesian
regression can provide a quantitative distribution of model pa-
rameters and estimate the uncertainty of the prediction interval. In
addition, it has the flexibility to set the prior probability
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distribution of the parameters flat to obtain results similar to the
frequentist approach or adjust the prior distribution of parameters
to increase the convergence and reliability of the model. For
example, a reasonable range for a parameter to exist can be
assumed to be a normal distribution with a mean and SD, in which
case the parameter has a prior probability. If the SD is very large
relative to the mean, this is close to a flat prior with little prior
information. Despite these advantages, this approach requires sig-
nificant amount of time and computing resources. In this study, to
improve the applicability of various models for future research, we
used the brms package [18] for MCMC. The brms package uses a flat
prior as the default value, producing results similar to those of the
frequentist approach.

Fig. 3 shows the three primary parameters of the fitted multi-
level model. All three parameters have a shape similar to that of a
normal distribution. Here, the round black dots are mean values,
thick bars are intervals with a credible interval width of 66%, and
thin bars are intervals with a credible interval width of 95%.
Assuming a normal distribution, they are similar to the 1 SD and 2
SD intervals. The mean value of b0 was 0.62, which is close to zero.
This value almost satisfies the assumption that E900-15 is a global
trend. The estimated sb for group bi was 9.45, summarizing the
distribution of bias among the 677 groups. The s value, which
represents the error between actual data points and the E900-15
shifted in parallel with the group biases, was 9.55. This s was
narrower than sb. Table 2 summarizes the representative param-
eters of the multilevel model.

Fig. 4 compares the prediction accuracy between E900-15 and
E900-15 with group bias. The R-squared and root mean SD (RMSD)
values were significantly improved by introducing group bi. In



Fig. 3. Distribution and mean values of the multilevel model parameters.
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particular, when the measured TTS was negative, the E900-15
model did not contain negative values, resulting in significant er-
rors. However, in the case of E900-15 with group bias, group bi
could have a negative value; therefore, the restriction was signifi-
cantly relaxed. Fig. 5 shows a graph depicting the distribution of the
residuals according to the predicted values. The closer the residual
slope is to zero, the better the model. The slope of E900-15 was
calculated to be�0.018 because of the application of the Baseline22
data, which contains 195 additional data points compared to the
Baseline15 data used to develop E900-15. This variation is thought
to be influenced by Ni, but an evaluation using bootstrap methods
[21] showed that modifications to the E900-15 model were not
necessary [22]. The slope of E900-15 with group bias was �0.028,
slightly lower than that of E900-15, but the addition of bias resulted
in only the scatter of the residual decrease, and the slope did not
change significantly. This confirmed the adequate performance of
the multilevel model.
Table 2
Fitted parameters of the multilevel model.

Parameter Estimate Est.Error

b0 0.62 0.43
sb 9.45 0.36
s 9.55 0.18

Fig. 4. Measured vs predicted TTS plots of
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Fig. 6 represents the group bi in the Korean surveillance test
data. Here, the red points are the no pooling bi calculated for each
group in Fig. 2, and the blue points are the means of the group bi
calculated through the multilevel model. Above the blue dots, the
histograms show the distribution of the group bi. In general, bi of
the multilevel model moves closer to the overall average than bi
calculated by no pooling. This phenomenon is known as shrinkage
[15]. The extent of shrinkage depended on the number of data
points in each group. A group with more than four data points
approaches no pooling bi, and when there are fewer data points, it
approaches the overall average. Moreover, the amount of data af-
fects the width of the bi distribution. When there is only one datum
in a group, the position of bi can exist over a wide range. The
location of bi became more reliable with increasing data points. In
the frequentist approach, it is not easy to calculate the distribution
of group bi, which is an example of one of the advantages of MCMC.

Fig. 7 shows the change in the SD of the distribution of group bi
according to the number of data points. A slight jitter was added to
the horizontal axis of the data points to express the dispersion of SD
change. As the amount of data in the group increase, the SD of bi
showa decreasing trend. Themaximumnumber of data points for a
typical surveillance test is usually six, and more is the case for SRM
data. The width of the bias distribution is significantly reduced
because of the large number of SRM data points. The credible in-
terval of bi gradually decreases as the number of data points in-
creases. This decrease was directly related to the prediction interval
for future surveillance tests. The estimation of the prediction in-
terval with increasing data points is described in the next section.

To easily visualize the trend of Figs. 6 and 8 shows an example of
the addition of group bi. The solid black line represents the pre-
dicted value of E900-15 and the dotted red line denotes the trend of
the no pooling bi. The dotted blue line represents the trend in
Group bi of the multilevel model. As shown in the upper panel of
Fig. 8, no pooling and partial pooling result in similar biases when
95% Credible Interval Lower 95% Credible Interval Upper

�0.22 1.47
8.76 10.18
9.21 9.91

E900-15 and E900-15 with group bias.



Fig. 5. Predicted TTS vs residuals plots of E900-15 and E900-15 with group bias.

Fig. 6. Distribution and mean value of the bias from the multilevel model in grouped
Korean surveillance data. Blue points represent the biases from the multilevel model.
Red points represent the no pooling biases.
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the number of data points in a group is large. The lower panel of
Fig. 8 shows only one data point, and the dotted blue line is closer to
the solid black line. The multilevel model provides a group trend
that is close to the overall trend when the number of data points is
small. This implies that the multilevel model reduces overfitting of
the no pooling model.

Since a method for considering bias in the global trend based on
the surveillance test data of each plant was reported [12], it has
been described in detail in recent technical reports [13,14]. These
reports propose a procedure for calculating bias to reduce errors in
the global trend in groups with more than three surveillance tests,
and this adjustment can significantly reduce the SD of E900-15. The
multilevel model of this study further considers the explicit in-
clusion of notch orientation in the group for bias calculation. In this
case, errors due to differences in notch orientation can be included
in the variation of bias, but the number of groups to be analyzed
increased, and the data within the groups decreased. The decrease
in data within groups makes it easier to obtain overfitted results
rather than appropriate biases. However, by introducing a multi-
level model, it was possible to calculate appropriate biases even
when the number of surveillance test data points was less than
three.

Ortner et al. reported that variations in the mechanical prop-
erties of RPV materials across different countries can result in dis-
parities in irradiation embrittlement [23]. To confirm this finding,
the distribution of bias and shrinkage tendency of the groups in
various countries were analyzed (Fig. 9). The blue dots are group bi
of the multilevel model and the red dots are group bi with no
pooling. The group biases of no pooling were overestimated or
underestimated depending on the country. Japan showed over-
estimated tendencies for E900-15, whereas Germany presented
underestimated tendencies. Group bi was appropriately moderated
in all countries using a multilevel model. Calculating the mean bias
of the country may be possible through additional modeling.
However, the small number of data groups in many countries
makes it difficult to obtain reliable parameters for a multilevel
model for each country. This result emphasizes the requirement for
joint collection and in-depth analysis of country-specific surveil-
lance data.

3.3. Calculation of prediction intervals

Amultilevel model can easily estimate the prediction interval of
the model based on the addition of new data. This prediction in-
terval simultaneously included between- and within-group errors.
For example, we removed KR0005 group data from the Baseline22
dataset and created a multilevel model. We then added a new
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surveillance data point and updated the model serially. In a sur-
veillance test, data points are not added simultaneously, but the
number of data points slowly increases over time. The experi-
mental model reproduced this situation. Fig. 10 shows the bias and
prediction intervals based on the model update. The solid black line
is the predicted trend of E900-15, and the gray shading indicates
the range of one SD of E900-15. The dotted blue line and shading
denote trends predicted by the multilevel model.

The group bias was estimated as 0.6 when there was no sur-
veillance test, n ¼ 0. This value was similar to the average value of
b0, 0.62. Because the MCMC depends on a random number, it is
slightly different. The SD of the prediction interval was ~13.5, which
is a value that considers both between-group sb and within-group
s. The prediction interval of the multilevel model was similar to
that SD of E900-15, except for the initial irradiation period. The SD
of E900-15 increased gradually according to the dose [9], but the



Fig. 7. Change in SD of the distribution of group bi according to the number of data points.

Fig. 8. TTS changes of the multilevel and no pooling models according to irradiation fluence in the selected data groups from Korean surveillance data. The blue line is from the
multilevel model, and the red line is from the no pooling model.
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multilevel model had the same prediction interval over the entire
irradiation range. Thus, the prediction interval of the multilevel
model was wider during the early stages of neutron irradiation.

After conducting the surveillance test and adding one data
point, the updatedmodel's first result in depicted in the n¼ 1 panel
in Fig. 10. The group bi increased to 5.2 based on the added data,
and the prediction interval decreased to 11.7. Panel n¼ 2 shows that
2850
an additional datumwas added. The large residuals of the new data
points were reflected in themultilevel model, resulting in increased
group bias. However, thewidth of the prediction interval continued
to decrease with the addition of data. When n ¼ 3, the group bias
decreased because the newlymeasured value was close to E900-15.
In the case of n ¼ 4, the measured value was lower than the pre-
dicted value of E900-15, and the bias approached zero. Group bias



Fig. 9. Differences between the bias from the no pooling and multilevel models from the grouped data in various countries. Blue points represent the biases from the multilevel
model. Red points represent the no pooling biases.
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was adequately determined based on the addition of the surveil-
lance test data.

Note that, even with the addition of just one data point, the
multilevel model suggests a reduced SD compared with E900-15.
This is related to the SD of the credible interval of the group bias
with the addition of data (Fig. 7). With one data point, the group
bias SD was approximately 6.8 (Fig. 7), and the within-group SD
was 9.55; therefore, combining the two SDs yielded 11.7, which is
the square root of the sum of the variances. The prediction interval
continued to decrease as data were added, but it did not fall below
10. This is because the within-group SD s was 9.55, and the pre-
diction interval could not contract below this value, even if the
number of data points increased. As demonstrated in this example,
the multilevel model can quantify the group bias and prediction
interval according to the addition of data, and it can be appropri-
ately applied to evaluate plant units for regulatory purposes.
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3.4. Improvement of the multilevel model

The current MCMC model considers only the bias change in
E900-15. Some factors affecting embrittlement may not best be
described as a simple bias. A more generalized model was formu-
lated to incorporate the slope term, as described below:

yij ¼ slope� f
�
xij; q

�þ bi þ εij (5)

The preliminary modeling with the slope parameter estimated
that the slope and b0 attain a value of 1.04 and �0.73, respectively.
Because E900-15 was a global trend, the slope and bias were close
to one and zero, respectively. Adding the slope variable to the global
trend E900-15 had little effect on the model performance, and the
slope change according to the three product forms (forgings, plates,
and welds) also did not significantly increase the performance.

To consider the random effects in the model, we can simulta-
neously estimate the bias and slope in a group. However, when



Fig. 10. Evolution of the bias and prediction interval of the multilevel model with increasing data points and refitting of the multilevel model.
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there is only one data point in a group, it is difficult to calculate the
two unknown parameters (bias and slope) with one data point. In
this case, a flat prior distribution for the slope cannot be applied. An
adequate prior distribution for the slope should be introduced, and
further studies will address the details related to this topic.
4. Summary

In this study, a Bayesian multilevel model with group bias was
developed to increase the applicability of the global trend E900-15
ETC to NPPs. The surveillance dataset Baseline22 was divided into
677 groups to group the data by combining plant name, product
form, and notch orientation. By adding the notch direction to the
grouping criterion, it was possible to calculate the bias of groups of
the same material with different unirradiated Charpy transition
temperatures in a plant. A multilevel model was formulated by
dividing the error of E900-15 into between- and within-group er-
rors, assuming that the group bias was normally distributed. The
distribution of model parameters and the bias of each group were
estimated using theMCMCmethod.With an increase in data points
within a group, the group bias approached the mean residual of the
data points in each group, and the width of the credible interval of
the mean decreased. Conversely, a smaller number of data points
within a group resulted in a group bias value closer to the overall
trend and a wide credible interval of the mean. Changes in the bias
and prediction interval due to the addition of surveillance test data
2852
could also be quantitatively estimated using a multilevel model.
Notably, an appropriate bias without overfitting could be calculated
even when the number of surveillance test data points was less
than three. The biases estimated from the multilevel model could
significantly improve the performance of the E900-15 ETC.
Advanced modeling, such as considering group slope changes, is
required to enhance the performance of the model further.
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