• Title/Summary/Keyword: base problem

Search Result 1,487, Processing Time 0.032 seconds

Insight into an Structural Similarity in Stage of Similar Mathematical Problem Solving Process (유사 문제 해결에서 구조적 유사성의 인식)

  • Jun, Young-Bae;Roh, Eun-Hwan;Kang, Jeong-Gi
    • The Mathematical Education
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • It is the aim of this paper to study the target problem solving process in reference to the base problem. We observed closely how students solve the target problem in reference to the base problem. The students couldn't solve the target problem, although they succeed to find the base problem. This comes from failing to discover the structural similarity between the target problem and the base problem. Especially it is important to cognize the proper corresponding of primary components between the base problem and target problem. And there is sometimes a part component of the target problem equivalent to the base problem and the target problem can't be solved without the insight into this fact. Consequently, finding the base problem fail to reach solving the target problem without the insight into their structural similarity. We have to make efforts to have an insight into the structural similarity between the target problem and the base problem to solve the target problem.

THE FROBENIUS PROBLEM FOR NUMERICAL SEMIGROUPS GENERATED BY THE THABIT NUMBERS OF THE FIRST, SECOND KIND BASE b AND THE CUNNINGHAM NUMBERS

  • Song, Kyunghwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.623-647
    • /
    • 2020
  • The greatest integer that does not belong to a numerical semigroup S is called the Frobenius number of S. The Frobenius problem, which is also called the coin problem or the money changing problem, is a mathematical problem of finding the Frobenius number. In this paper, we introduce the Frobenius problem for two kinds of numerical semigroups generated by the Thabit numbers of the first kind, and the second kind base b, and by the Cunningham numbers. We provide detailed proofs for the Thabit numbers of the second kind base b and omit the proofs for the Thabit numbers of the first kind base b and Cunningham numbers.

On the numerical assessment of the separation zones in semirigid column base plate connections

  • Baniotopoulos, C.C.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.295-309
    • /
    • 1994
  • The present paper concerns the mathematical study and the numerical treatment of the problem of semirigid connections in bolted steel column base plates by taking into account the possibility of appearance of separation phenomena on the contact surface under certain loading conditions. In order to obtain a convenient discrete form to simulate the structural behaviour of a steel column base plate, the continuous contact problem is first formulated as a variational inequality problem or, equivalently, as a quadratic programming problem. By applying an appropriate finite element scheme, the discrete problem is formulated as a quadratic optimization problem which expresses, from the standpoint of Mechanics, the principle of minimum potential energy of the semirigid connection at the state of equilibrium. For the numerical treatment of this problem, two effective and easy-to-use solution strategies based on quadratic optimization algorithms are proposed. This technique is illustrated by means of a numerical application.

Optimal Base Station Clustering for a Mobile Communication Network Design

  • Hong, Jung-Man;Lee, Jong-Hyup;Lee, Soong-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.1069-1084
    • /
    • 2011
  • This paper considers an optimal base station clustering problem for designing a mobile (wireless) communication network. For a given network with a set of nodes (base stations), the problem is to optimally partition the set of nodes into subsets (each called a cluster) such that the associated inter-cluster traffic is minimized under certain topological constraints and cluster capacity constraints. In the problem analysis, the problem is formulated as an integer programming problem. The integer programming problem is then transformed into a binary integer programming problem, for which the associated linear programming relaxation is solved in a column generation approach assisted by a branch-and-bound procedure. For the column generation, both a heuristic algorithm and a valid inequality approach are exploited. Various numerical examples are solved to evaluate the effectiveness of the LP (Linear Programming) based branch-and-bound algorithm.

A Conceptual Modeling Tools for the Model Base Design (모델베이스 설계를 위한 개념적 모델링 도구에 관한 연구)

  • 정대율
    • The Journal of Information Systems
    • /
    • v.7 no.1
    • /
    • pp.181-208
    • /
    • 1998
  • In many literatures of model management, various schemes for representing model base schema have proposed. Ultimately, the goal is to arrive at a set of mutually supportive and synergistic methodologies and tools for the modeling problem domain and model base design. This paper focus on how best to structure and represent conceptual model of problem domain and schema of model base. Semantic concepts and modeling constructs are valuable conceptual tools for understanding the structural relationships and constraints involved in an model management environment. To this end, we reviewed the model management literature, and analyzed the constructs of modeling tools of data model management graph-based approach. Although they have good tools but most of them are not enough for the representation of structural relationships and constraints. So we wanted more powerful tools which can represent diverse constructs in a decision support modeling and model base schema design. For the design of a model base, we developed object modeling framework which uses Object Modeling Techniques (OMT). In Object Modeling Framework, model base schema are classified into conceptual schema, logical schema, and physical schema. The conceptual schema represents the user's view of problem domain, and the logical schema represents a model formatted by a particular modeling language. The schema design, this paper proposes an extension of Object Model to overcome some of the limitations exhibited by the OMT. The proposed tool, Extended Object Model(EOM) have diverse constructs for the representation of decision support problem domain and conceptual model base schema.

  • PDF

Optimal and Approximate Solutions of Object Functions for Base Station Location Problem (기지국 위치 문제를 위한 목적함수의 최적해 및 근사해)

  • Sohn, Surg-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.179-184
    • /
    • 2007
  • The problem of selecting base station location in the design of mobile communication system has been basically regarded as a problem of assigning maximum users in the cell to the minimum base stations while maintaining minimum SIR. and it is NP hard. The objective function of warehouse location problem, which has been used by many researchers, is not proper function in the base station location problem in CDMA mobile communication, The optimal and approximate solutions have been presented by using proposed object function and algorithms of exact solution, and the simulation results have been assessed and analyzed. The optimal and approximate solutions are found by using mixed integer programming instead of meta-heuristic search methods.

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

Analogical Reasoning in Construction of Quadratic Curves (이차곡선의 작도 활동에서 나타난 유추적 사고)

  • Heo, Nam Gu
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.51-67
    • /
    • 2017
  • Analogical reasoning is a mathematically useful way of thinking. By analogy reasoning, students can improve problem solving, inductive reasoning, heuristic methods and creativity. The purpose of this study is to analyze the analogical reasoning of preservice mathematics teachers while constructing quadratic curves defined by eccentricity. To do this, we produced tasks and 28 preservice mathematics teachers solved. The result findings are as follows. First, students could not solve a target problem because of the absence of the mathematical knowledge of the base problem. Second, although student could solve a base problem, students could not solve a target problem because of the absence of the mathematical knowledge of the target problem which corresponded the mathematical knowledge of the base problem. Third, the various solutions of the base problem helped the students solve the target problem. Fourth, students used an algebraic method to construct a quadratic curve. Fifth, the analysis method and potential similarity helped the students solve the target problem.

The Password base System for the safe and Efficient Identification (안전하고 효율적인 신원확인을 위한 암호기반 시스템)

  • Park, Jong-Min;Park, Byung-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • Almost all network systems provide an authentication mechanism based on user ID and password. In such system, it is easy to obtain the user password using a sniffer program with illegal eavesdropping. The one-time password and challenge-response method are useful authentication schemes that protect the user passwords against eavesdropping. In client/server environments, the one-time password scheme using time is especially useful because it solves the synchronization problem. In this paper, we propose a new identification scheme One Pass Identification. The security of Password base System is based on the square root problem, and Password base System is secure against the well known attacks including pre-play attack, off-line dictionary attack and server comprise. A number of pass of Password base System is one, and Password base System processes the password and does not need the key. We think that Password base System is excellent for the consuming time to verify the prover.

Active and Passive Beamforming for IRS-Aided Vehicle Communication

  • Xiangping Kong;Yu Wang;Lei Zhang;Yulong Shang;Ziyan Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1503-1515
    • /
    • 2023
  • This paper considers the jointly active and passive beamforming design in the IRS-aided MISO downlink vehicle communication system where both V2I and V2V communication paradigms coexist. We formulate the problem as an optimization problem aiming to minimize the total transmit power of the base station subject to SINR requirements of both V2I and V2V users, total transmit power of base station and IRS's phase shift constraints. To deal with this non-convex problem, we propose a method which can alternately optimize the active beamforming at the base station and the passive beamforming at the IRS. By using first-order Taylor expansion, matrix analysis theory and penalized convex-concave process method, the non-convex optimization problem with coupled variables is converted into two decoupled convex sub-problems. The simulation results show that the proposed alternate optimization algorithm can significantly decrease the total transmit power of the vehicle base station.