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THE FROBENIUS PROBLEM FOR NUMERICAL

SEMIGROUPS GENERATED BY THE THABIT NUMBERS

OF THE FIRST, SECOND KIND BASE b AND THE

CUNNINGHAM NUMBERS

Kyunghwan Song

Abstract. The greatest integer that does not belong to a numerical

semigroup S is called the Frobenius number of S. The Frobenius problem,

which is also called the coin problem or the money changing problem, is a
mathematical problem of finding the Frobenius number. In this paper, we

introduce the Frobenius problem for two kinds of numerical semigroups

generated by the Thabit numbers of the first kind, and the second kind
base b, and by the Cunningham numbers. We provide detailed proofs for

the Thabit numbers of the second kind base b and omit the proofs for the
Thabit numbers of the first kind base b and Cunningham numbers.

1. Introduction

Let N be the set of nonnegative integers. At first, we introduce a numerical
semigroup and submonoid generated by a nonempty subset.

Definition 1.1 ([21, 24]). A numerical semigroup is a subset S of N that is
closed under addition, contains 0 and for which N\S is finite.

Definition 1.2 ([21,24]). Given a nonempty subset A of a numerical semigroup
N, we will denote by

〈
A
〉

the submonoid of (N,+) generated by A, that is,〈
A
〉

= {λ1a1 + · · ·+ λnan |n ∈ N\{0}, ai ∈ A, λi ∈ N
for all i ∈ {1, . . . , n}} .
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Also, we introduce a theorem and definition directly related to the definitions
above.

Theorem 1.3 ([21, 24]). Let
〈
A
〉

be the submonoid of (N,+) generated by a

nonempty subset A of a numerical semigroup N as in Definition 1.2. Then
〈
A
〉

is a numerical semigroup if and only if gcd(A) = 1.

Definition 1.4 ([21,24]). If S is a numerical semigroup and S =
〈
A
〉
, then we

say that A is a system of generators of S. Moreover, if S 6=
〈
X
〉

for all X ( A,
we say that A is a minimal system of generators of S.

The greatest integer that does not belong to a numerical semigroup S is
called the Frobenius number of S and is denoted by F (S). In other words,
the Frobenius number is the largest integer that cannot be expressed as a sum∑n

i=1 tiai, where t1, t2, . . . , tn are nonnegative integers and a1, a2, . . . , an are
given positive integers such that gcd(a1, a2, . . . , an) = 1. Finding the Frobe-
nius number is called the Frobenius problem, the coin problem or the money
changing problem. The Frobenius problem is not only interesting for pure
mathematicians but is also connected with graph theory in [10, 11] and the
theory of computer science in [17], as introduced in [16]. There are explicit
formulas for calculating the Frobenius number when only two relatively prime
numbers are present [29]. Recently, semi-explicit formula [19] for the Frobe-
nius number for three relatively prime numbers are presented. An improved
semi-explicit formula was presented for this case in 2017 [31].

F. Curtis proved in [6] that the Frobenius number for three or more rel-
atively prime numbers cannot be given by a finite set of polynomials and
Ramı́rez-Alfonśın proved in [18] that the problem is NP-hard. Currently, only
algorithmic methods for determining the general formula for the Frobenius
number of a set that has three or more relatively prime numbers in [2,3] exist.
Some recent studies have reported that the running time for the fastest algo-
rithm is O(a1), with the residue table in memory in [5] and O(na1) with no
additional memory requirements in [3]. In addition, research on the limiting
distribution in [28] and lower bound in [1, 7] of the Frobenius number were
presented. From an algebraic viewpoint, rather than finding the general for-
mula for three or more relatively prime numbers, the formulae for special cases
were found such as the Frobenius number of a set of integers in a geometric
sequence in [15], a Pythagorean triples in [8] and three consecutive squares or
cubes in [12]. Recently, various methods for solving the Frobenius problem for
numerical semigroups have been suggested in [4, 20, 24, 25], etc. In particular,
a method for computing the Apéry set and obtaining the Frobenius number
using the Apéry set is an efficient tool for solving the Frobenius problem of
numerical semigroups as reported in [14,24,26]. Furthermore, in recent articles
presenting the Frobenius problems for Fibonacci numerical semigroups in [13],
Mersenne numerical semigroups in [23], Thabit numerical semigroups in [21]
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and repunit numerical semigroups in [22], this method is used to obtain the
Frobenius number.

The Frobenius problem in the numerical semigroups
〈
{3 · 2n+i − 1 | i ∈

{0, 1, . . .}}
〉

for n ∈ {0, 1, . . .} was presented in [21]. In [21], the authors re-
call the Thabit number 3 · 2n − 1 and Thabit numerical semigroups T (n) =〈
{3 · 2n+i − 1 | i ∈ {0, 1, . . .}}

〉
for a nonnegative integer n and they used the

definition of the minimal system of generators for T (n) as the smallest sub-
set of

〈
{3 · 2n+i − 1 | i ∈ N}

〉
that equals T (n). In [21], it is proved that the

minimal system of generators for T (n) is
〈
{3 · 2n+i − 1 | i ∈ {0, 1, . . . , n+ 1}}

〉
.

The embedding dimension is the cardinality of the minimal system of gener-
ators. By the minimality of the system

〈
{3 · 2n+i − 1 | i ∈ {0, 1, . . . , n + 1}}

〉
for T (n), the embedding dimension for T (n) is n + 2. For any set S and
x ∈ S\{0}, the Apéry set was defined by Ap(S, x) = {s ∈ S | s − x 6∈ S}. Let
si = 3 · 2n+i − 1 for each nonnegative integer i. Then, the Apéry set is defined
by Ap(T (n), s0) = {s ∈ T (n) | s− s0 6∈ T (n)} for s0. In [21], Ap(T (n), s0) was
described explicitly leading to a solution to the Frobenius problem. Let R(n)
be the set of sequences (t1, . . . , tn+1) ∈ {0, 1, 2}n+1 that satisfy the following
conditions:

(1) tn+1 ∈ {0, 1},
(2) If tj = 2, then ti = 0 for all i < j ≤ n,
(3) If tn = 2, then tn+1 = 0,
(4) If tn = tn+1 = 1, ti = 0 for all 1 ≤ i < n.

Then [21] concludes that Ap(T (n), s0) = {t1s1+· · ·+tn+1sn+1 | (t1, . . . , tn+1) ∈
R(n)}. The Frobenius number of the numerical semigroups was presented
by F (S) = max(Ap(S, x)) − x in [24] and therefore the Frobenius number of
Thabit numerical semigroups is sn + sn+1 − s0 = 9 · 22n − 3 · 2n − 1. Also, an
extended result of [21] has been suggested in 2017 which dealt the numerical
semigroups

〈
{(2k − 1) · 2n+i − 1 | i ∈ {0, 1, . . .}}

〉
for n ∈ {0, 1, . . .} and 2 ≤

k ≤ 2n [9]. In other words, the coefficient 3 in Thabit numerical semigroups
was extended. Also, we gave on a result of the numerical semigroups. The
result is the extension of the result reported in [21], the numerical semigroup
is
〈
{(2k + 1) · 2n+i − (2k − 1) | i ∈ N}

〉
for n ∈ N and k ∈ N\{0} [30].

In this paper, we aim to solve the Frobenius problem for the numerical
semigroups generated by the Thabit numbers of the first and second kind
base b defined by {(b + 1) · bn+i − 1 | i ∈ {0, 1, . . .}} for n ∈ {0, 1, . . .} and
{(b+1) ·bn+i +1 | i ∈ {0, 1, . . .}} for n ∈ {0, 1, . . .} with b 6≡ 1 (mod 3), and the
Cunningham numbers defined by {bn+i + 1 | i ∈ {0, 1, . . .}} for n ∈ {0, 1, . . .}
with even positive integer b. To do this, we first determine the minimal sys-
tem of generators and the Apéry set of the Thabit numerical semigroups of
the second kind base b. Then, we compute the Frobenius number, genus,
pseudo-Frobenius number, and type in these numerical semigroups. The ma-
jor part of this paper has been motivated by [21], but the generalizations in
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our work require some additional tools. For example, in Theorem 3.8, we in-
troduced an inductively defined sequence related to the number of elements
in Ap(Tb,2(n), s0). Also, we have to use the modular arithmetic more deeply
because the elements of Apéry set are not sorted naturally like in the case of
Thabit numerical semigroups (see Lemma 13 in [21]).

This paper is organized as follows. In Section 2, we compute the minimal
system of generators and the embedding dimension for the Thabit numerical
semigroups of the second kind base b. In Section 3, we propose a method for
obtaining the Apéry set, the Frobenius number, and the genus for the Thabit
numerical semigroups of the second kind base b. In Section 4, we present
a method for obtaining a pseudo-Frobenius number, which is a type of the
Thabit numerical semigroup of the second kind base b. Finally, in Section 5
and 6, we summarize the results related to the Thabit numerical semigroups
of the first kind base b and the Cunningham numerical semigroups without
the proofs because their proofs are similar to those of the Thabit numerical
semigroup of the second kind base b. Some theorems and definitions essential
to understanding this paper are provided below.

Definition 1.5. A positive integer x is a Thabit number of the first kind base
b if x = (b+ 1) · bn − 1 for some n, b ∈ N and b ≥ 2.

Definition 1.6. A positive integer x is a Thabit number of the second kind
base b if x = (b+ 1) · bn + 1 for some n, b ∈ N and b ≥ 2.

Definition 1.7. A numerical semigroup S is called a Thabit numerical semi-
group of the first kind base b if there exist n, b ∈ N and b ≥ 2 such that
S =

〈
{(b+ 1) · bn+i − 1 | i ∈ N}

〉
. We will denote by Tb,1(n) the Thabit numer-

ical semigroup of the first kind base b
〈
{(b+ 1) · bn+i − 1 | i ∈ N}

〉
.

Definition 1.8. A numerical semigroup S is called a Thabit numerical semi-
group of the second kind base b if there exist n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3)
such that S =

〈
{(b+1) ·bn+i+1 | i ∈ N}

〉
. We will denote by Tb,2(n) the Thabit

numerical semigroup of the second kind base b
〈
{(b+ 1) · bn+i + 1 | i ∈ N}

〉
.

Definition 1.9. We call a positive integer x a Cunningham number if x = bn+1
for some n, b ∈ N, 2 | b.
Definition 1.10. A numerical semigroup S is called a Cunningham numerical
semigroup if there exist n, b ∈ N and 2 | b such that S =

〈
{bn+i+1 | i ∈ N}

〉
. We

denote by SC+(b, n) the Cunningham numerical semigroup
〈
{bn+i+1 | i ∈ N}

〉
.

Theorem 1.11 ([24]). Every numerical semigroup admits a unique minimal
system of generators, which in addition is finite.

Definition 1.12 ([21,24]). The cardinality of a minimal system of generators
S is called the embedding dimension of S and is denoted by e(S).

Definition 1.13 ([21,24]). We call the cardinality of N\S the genus of S and
denoted by g(S) for a numerical semigroup S.
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Definition 1.14 ([24]). An integer x is a pseudo-Frobenius number if x 6∈ S
and x+ s ∈ S for all s ∈ S\{0}. The set of pseudo-Frobenius numbers of S is
denoted by PF (S). Also, we call its cardinality the type of S and denote it by
t(S).

2. The embedding dimension for Tb,2(n)

Let Tb,2(n) =
〈
{(b + 1) · bn+i + 1 | i ∈ N}

〉
for n, b ∈ N, b ≥ 2 and b 6≡ 1

(mod 3). Then Tb,2(n) is a submonoid of (N,+). Moreover we have {(b+1)·bn+
1, (b+1)·bn+1+1} ⊆ Tb,2(n) and if we let g = gcd((b+1)·bn+1, (b+1)·bn+1+1),
g = gcd((b+1)·bn+1+b, (b+1)·bn+1+1) and it divides b−1. But (b+1)·bn+1 ≡ 3
(mod b − 1) implies that g divides 3 and if b 6≡ 1 (mod 3), 3 does not divide
(b+ 1) · bn + 1 and hence Tb,2(n) is a numerical semigroup.

Lemma 2.1. Let A be a nonempty set of positive integers, n, b ∈ N, b ≥ 2, b 6≡ 1
(mod 3) and M =

〈
A
〉
. Then the following conditions are equivalent:

(1) ba− (b− 1) ∈M for all a ∈ A,
(2) bm− (b− 1) ∈M for all m ∈M\{0}.

The proof of the above lemma is similar to that of Lemma 1 in [21], and it
is a special case of Lemma 2 in [22].

Proposition 2.2. For n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3), we have bt−(b−1) ∈
Tb,2(n) for all t ∈ Tb,2(n)\{0}.

The proof of the above proposition is similar to that of Proposition 2 in [21].
We need some preliminary results to find out the minimal system of generators
of Tb,2(n).

Lemma 2.3. Let n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3) and S =
〈
{(b+ 1) · bn+i +

1 | i ∈ {0, 1, . . . , n+ 1}}
〉
. Then bt− (b− 1) ∈ S for all t ∈ S\{0}.

Proof. The proof of the above lemma is similar to that of Lemma 3 in [21]. �

We show a conclusion for a minimal system of generators of Tb,2(n) in the
following theorem.

Theorem 2.4. For n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3), we have
〈
{(b + 1) ·

bn+i + 1 | i ∈ {0, 1, . . . , n+ 1}}
〉

is the minimal system of generators.

Proof. Tb,2(n) =
〈
{(b+1) ·bn+i+1 | i ∈ {0, 1, . . . , n+1}}

〉
by Lemma 2.3 in this

paper and Lemma 4 in [21], and it suffices to show that the minimality holds.
Let us suppose conversely, that (b + 1) · b2n+1 + 1 ∈

〈
{(b + 1) · bn+i + 1 | i ∈

{0, 1, . . . , n}}
〉
. Then there exist a0, . . . , an ∈ N such that

(b+ 1) · b2n+1 + 1 =

n∑
j=0

aj
(
(b+ 1) · bn+j + 1

)
=

n∑
j=0

(b+ 1)ajb
n+j +

n∑
j=0

aj
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and consequently,
∑n

j=0 aj ≡ 1 mod (b+1)·bn. Hence
∑n

j=0 aj = 1+t·(b+1)·bn
for some t ∈ N. In addition, it is clear that t 6= 0 and thus

∑n
j=0 aj ≥

1 + (b+ 1) · bn. Combining these results, we obtain the inequality

n∑
j=0

aj
(
(b+ 1) · bn+j + 1

)
> (b+ 1) · b2n+1 + 1

and similarly, we obtain

n−l∑
j=0

aj
(
(b+ 1) · bn+j + 1

)
> (b+ 1) · b2n+1−l + 1

for 0 < l ≤ n. This completes the proof. �

By Theorem 2.4, we can identify the embedding dimension of Tb,2(n) for
all n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3), which turns out that the embedding
dimension of Tb,2(n) is independent of b.

Corollary 2.5. Let n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3) and let Tb,2(n) be a
Thabit numerical semigroup of the second kind base b associated with n and b.
Then we obtain that e(Tb,2(n)) = n+ 2.

We propose an example related to the Thabit numerical semigroup of the
second kind base b, Tb,2(n).

Example 2.6. Let b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3). Then Tb,2(3) =
〈
{(b +

1) · b3 + 1, (b + 1) · b4 + 1, (b + 1) · b5 + 1, (b + 1) · b6 + 1, (b + 1) · b7 + 1}
〉

=〈
{b4+b3+1, b5+b4+1, b6+b5+1, b7+b6+1, b8+b7+1}

〉
is a Thabit numerical

semigroup of the second kind base b with embedding dimension 3 + 2 = 5.

3. The Apéry set for Tb,2(n)

Definition 3.1 ([24]). Let S be a numerical semigroup and let x ∈ S\{0}.
Then, we have the Apéry set of x in S defined as Ap(S, x) = {s ∈ S | s−x 6∈ S}.

From the definition above, we have the following lemma.

Lemma 3.2 ([24]). Let S be a numerical semigroup and let x ∈ S\{0}. Then
Ap(S, x) has cardinality equal to x. Moreover Ap(S, x) = {w(0), w(1), . . . , w(x−
1)} where w(i) is the least element of S congruent with i modulo x for all
i ∈ {0, . . . , x− 1}.

Example 3.3. Let S=〈{7, 11, 13}〉. Then S={0, 7, 11, 13, 14, 18, 20, 21, 22, 24,
25, 26, 27, 28, 29, 31,→} where the symbol → means that every integer greater
than 31 belongs to the set.

Hence Ap(S, 7) = {0, 11, 13, 22, 24, 26, 37}.

The relation among the Frobenius number, genus and Apéry set of a numer-
ical semigroup is provided in the following lemma.
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Lemma 3.4 ([24, 27]). Let S be a numerical semigroup and let x ∈ S\{0}.
Then,

(1) F (S) = max(Ap(S, x))− x.
(2) g(S) = 1

x (
∑

w∈Ap(S,x) w)− x−1
2 .

Henceforth, we will denote by si the elements (b + 1) · bn+i + 1 for each
i ∈ {0, 1, . . . , n+1}. Thus, with this notation, {s0, s1, . . . , sn+1} is the minimal
system of generators of Tb,2(n).

Lemma 3.5. Let n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3). Then:

(1) If 0 < i ≤ j < n+ 1, then si + bsj = bsi−1 + sj+1.
(2) If 0 < i ≤ n+ 1, then

si + bsn+1 = (bn+2 − bn − b− 1)s0 + bn−1s1 + bsi−1.

Proof. (1) The proof is similar to that of (1) of Lemma 9 in [21].
(2) It can be derived directly since si + bsn+1 = bsi−1 + sn+2 and sn+2 =

(bn+2 − bn − b− 1)s0 + bn−1s1. �

In Lemma 3.5, we can consider the set of coefficients (t1, . . . , tn+1) such

that the expressions
∑n+1

j=1 tjsj represent all elements in Ap(Tb,2(n), s0). We

follow a step-by-step approach to establish the set of coefficients (t1, . . . , tn+1).

First, we obtain the set of coefficients (t1, . . . , tn+1) such that
∑n+1

j=1 tjsj , which

contains all elements that are in Ap(Tb,2(n), s0), but that might not be equal.
We obtain the set by the following lemma.

Lemma 3.6. Let Ab,2(n) be the set of (t1, . . . , tn+1) ∈ {0, 1, . . . , b}n+1 such
that if tj = b, then ti = 0 for all i < j. Then

Ap(Tb,2(n), s0) ⊆ {
n+1∑
j=1

tjsj | (t1, . . . , tn+1) ∈ Ab,2(n)}.

Proof. The overall proof is the same as that of Lemma 10 in [21]. �

We define Rb,2(n) for b ≥ 2 and b 6≡ 1 (mod 3), as follows:

Definition 3.7. Let b ≥ 2 and b 6≡ 1 (mod 3). Then

Rb,2(n) = {(t1, t2, . . . , tn+1) | ti ∈ {0, 1, . . . , b}}

is defined by

(1) If ti = b, tj = 0 for all 1 ≤ j < i.
(2) tn+1 ≤ b− 1.
(3) If tn+1 = b− 1, then tn ≤ b− 1 and if (tn, tn+1) = (b− 1, b− 1), t1 ≤ 2

and all ti = 0 for i 6= 1, n, n+ 1.

Then we obtain the following theorem:



630 K. SONG

Theorem 3.8. Let n, b ≥ 2 and b 6≡ 1 (mod 3). Then we obtain

Ap(Tb,2(n), s0) =

{
n+1∑
i=1

tisi | (t1, . . . , tn+1) ∈ Rb,2(n)

}
.

Proof. We obtain the number of nonzero elements in{
n+1∑
i=1

tisi | (t1, . . . , tn+1) ∈ Rb,2(n)

}
in the following manner:

(1) The number of t1 6= 0 is b since 0 ≤ t1 ≤ b.
(2) ai = (The number of (t1, . . . , ti) 6= (0, . . . , 0)) for i < n + 1 can be

defined inductively by the formula ai = bai−1 + b in three parts:
(a) If ti = 0, the number of the cases is ai−1.
(b) If ti = j, where 1 ≤ j ≤ b− 1, the number of the cases is ai−1 + 1

for each j.
(c) If ti = b, the number of the case is 1.

Hence, we obtain an = bn+1−b
b−1 . The number of all elements satisfying tn+1 ≤

b− 2 is (
1 +

bn+1 − b
b− 1

)
(b− 1) = bn+1 − 1

and note that the difference of s0 and bn+1 − 1 is bn + 2. Also, we obtain
an−1 = bn−b

b−1 and the number of all elements satisfying tn ≤ b − 2 for fixed
tn+1 = b− 1 is (

1 +
bn − b
b− 1

)
(b− 1) = bn − 1

and note that the difference of bn + 2 and bn− 1 is 3. Hence the number of the

elements in the set
{∑n+1

i=1 tisi | (t1, . . . , tn+1) ∈ Rb,2(n)
}

is equal to s0.

Notice that all elements in Rb,2(n) were chosen in Ab,2(n) by the smallest
elements in Ab,2(n) (see Lemma 3.6). Hence the remaining part is to show that{∑n+1

i=1 tisi | (t1, . . . , tn+1) ∈ Rb,2(n)
}

is a complete system of residues modulo

s0 by Lemma 3.2. It can be shown as follows:

(1) 0, s1, . . . , bs1 ≡ 0,−(b− 1), . . . ,−b(b− 1) (mod s0).
(2) For (t1, t2, 0, . . . , 0) ∈ Rb,2(n), t1s1 + t2s2 ≡ −(b+ 1)(b− 1), . . . ,−(b2 +

b)(b− 1) (mod s0) for t2 6= 0.
(3) For (t1, t2, t3, 0, . . . , 0) ∈ Rb,2(n), t1s1 + t2s2 + t3s3 ≡ −(b2 + b+ 1)(b−

1), . . . ,−(b3 + b2 + b)(b− 1) (mod s0) for t3 6= 0.

And so on, finally 2s1 + (b− 1)sn + (b− 1)sn+1 ≡ −2(b− 1)− (b− 1)(bn− 1)−
(b− 1)(bn+1− 1) ≡ (−bn+1− bn)(b− 1) ≡ b− 1 (mod s0). Since (b− 1, s0) = 1
if b 6≡ 1 (mod 3), {0,−(b − 1), . . . , (−bn+1 − bn)(b − 1)} is a complete system
of residues modulo s0 and it completes the proof. �



THE FROBENIUS PROBLEM FOR NUMERICAL SEMIGROUPS 631

In a similar way, we obtain the explicit form of the Apéry set of Thabit
numerical semigroups of the second kind base b for n = 0 and n = 1 and we
obtain the genus of Thabit numerical semigroups of the second kind base b for
n = 0 and n = 1.

Theorem 3.9. (1) For n = 0 and b 6≡ 1 (mod 3), we obtain

Ap(Tb,2(0), s0) = {t1s1 | t1 ∈ {0, 1, . . . , b+ 1}}
= {b+ 2, b2 + b+ 1, . . . , b3 + 2b2 + 2b+ 1}

since s1 ≡ −(b − 1) (mod b + 2) and {0,−(b − 1), . . . ,−(b + 1)(b − 1)} is a
complete system of residues modulo b+ 2. Hence, we obtain∑

(t1)∈Rb,2(0)

t1s1 =

b+1∑
k=1

ks1

= (b+ 2)

(
1

2
(b+ 1)(b2 + b+ 1)

)
and g(Tb,2(0)) = 1

2 (b+ 1)(b2 + b+ 1)− b+1
2 = b3+2b2+b

2 .
(2) For n = 1 and b 6≡ 1 (mod 3), we obtain

Ap(Tb,2(1), s0) = {t1s1 + t2s2 | t1 ∈ {0, 1, . . . , b}, t2 ∈ {0, 1, . . . , b− 1}}
⋃
{bs2}

= {0, s1, . . . , bs1, s2, s1 + s2, . . . , bs1 + s2, . . . ,

(b− 1)s2, s1 + (b− 1)s2, . . . , bs1 + (b− 1)s2, bs2}

since s1 ≡ −(b− 1) (mod b2 + b+ 1) and {0,−(b− 1), . . . ,−(b2 + b)(b− 1)} is
a complete system of residues modulo b2 + b+ 1. Hence, we obtain∑

(t1,t2)∈Rb,2(1)

(t1s1 + t2s2) = b

b∑
k=1

ks1 + (b+ 1)

b−1∑
k=1

ks2 + bs2

=
1

2
(b2 + b+ 1)(b5 + b4 + b3 + b)

and g(Tb,2(1)) = 1
2 (b5 + b4 + b3 + b)− b2+b

2 = b5+b4+b3−b2
2 .

We obtain the maximal element in the Apéry set of Thabit numerical semi-
group of the second kind base b and the Frobenius number of this semigroup
is obtained immediately as follows:

Corollary 3.10. (1) If n = 0, Ap(Tb,2(0), s0) = {t1s1 | t1 ∈ {0, 1, . . . , b+ 1}} =
{b + 2, b2 + b + 1, . . . , b3 + 2b2 + 2b + 1} implies that max(Ap(Tb,2(0), s0)) =
(b+ 1)s1 = b3 + 2b2 + 2b+ 1 and F (Tb,2(0)) = (b+ 1)s1− s0 = b3 + 2b2 + b− 1.
If n = 1, Ap(Tb,2(1), s0) = {t1s1 + t2s2 | t1 ∈ {0, 1, . . . , b}, t2 ∈ {0, 1, . . . , b −
1}}

⋃
{bs2} implies that max(Ap(Tb,2(1), s0)) = bs1+(b−1)s2 = b5+b4+2b−1

and F (Tb,2(1)) = bs1 + (b− 1)s2 − s0 = b5 + b4 − b2 + b− 2.
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(2) If n ≥ 2, Ap(Tb,2(n), s0) =
{∑n+1

i=1 tisi | (t1, . . . , tn+1) ∈ Rb,2(n)
}

implies

that

max(Ap(Tb,2(n), s0)) = 2s1 + (b− 1)sn + (b− 1)sn+1 and

F (Tb,2(n)) = 2s1 + (b− 1)sn + (b− 1)sn+1 − s0
= b2n+3 + b2n+2 − b2n+1 − b2n + 2bn+2 + 2bn+1 + 2b2.

Finally, we obtain the genus of Thabit numerical semigroups of the second
kind base b for n ≥ 2.

Theorem 3.11. Let n, b ∈ N and n, b ≥ 2. Then

g(Tb,2(n)) = 3b+
b2n(b3 + b2 − b− 1) + bn

(
b2(n+ 1)− (n+ 3)

)
2

.

Proof. First, we consider∑
(t1,...,tn+1)∈Rb,2(n)

(t1s1 + · · ·+ tn+1sn+1)

=

b−1∑
k=1

∑
(t1,...,tn+1)∈Rb,2(n),t1=k

ks1 + · · ·+
b−1∑
k=1

∑
(t1,...,tn+1)∈Rb,2(n),tn−1=k

ksn−1

+

b−2∑
k=1

∑
(t1,...,tn+1)∈Rb,2(n),tn=k

ksn +
∑

(t1,...,tn+1)∈Rb,2(n),tn=b−1

(b− 1)sn

+

b−2∑
k=1

∑
(t1,...,tn+1)∈Rb,2(n),tn+1=k

ksn+1 +
∑

(t1,...,tn+1)∈Rb,2(n),tn+1=b−1

(b− 1)sn+1

+
∑

(t1,...,tn+1)∈Rb,2(n),t1=b

bs1 + · · ·+
∑

(t1,...,tn+1)∈Rb,2(n),tn=b

bsn.

We obtain that∑
(t1,...,tn+1)∈Rb,2(n)

(t1s1 + · · ·+ tn+1sn+1)

=

n−1∑
i=1

(b−1)b
2 · (b+ 1)(bn−1−bn−i−1) ·

(
(b+ 1) · bn+i + 1

)
+3
(
(b+ 1) · bn+1+1

)
+ (b−2)(b−1)

2 ·
(

bn+1−b
b−1 ·

(
(b+ 1) · b2n + 1

)
+ bn+1−1

b−1 ·
(
(b+ 1) · b2n+1 + 1

))
+ (bn + 2)(b− 1) ·

(
(b+ 1) · (b2n + b2n+1) + 2

)
+

n−1∑
i=1

(b2 − 1)bn−i
(
(b+ 1) · bn+i + 1

)
+ (b− 1)b

(
(b+ 1) · b2n + 1

)
= (b−1)b(b+1)

2

(
(b+1) · b

3n−1−b2n
b−1 +(n− 1)bn−1−(n− 1)(b+ 1)b2n−1 − bn−1−1

b−1

)
+ 3

(
(b+ 1) · bn+1 + 1

)
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+ b−2
2 ·

(
(bn+1 − b) ·

(
(b+ 1) · b2n + 1

)
+ (bn+1 − 1) ·

(
(b+ 1) · b2n+1 + 1

))
+ (bn + 2)(b− 1) ·

(
(b+ 1) · (b2n + b2n+1) + 2

)
+ (b2 − 1)(b+ 1)(n− 1)b2n + (b+ 1)(bn − b) + (b− 1)b

(
(b+ 1) · b2n + 1

)
= 1

2 ((b+ 1) · bn + 1)(
6b− b2n + bn+1 − b2n+1 + b2n+2 + b2n+3 + bn+2(n+ 1)− bn(n+ 2)

)
.

Hence,

g(Tb,2(n)) = 1
2

(
6b− b2n + bn+1 − b2n+1 + b2n+2 + b2n+3

+bn+2(n+ 1)− bn(n+ 2)
)
− (b+1)·bn

2

= 3b+
b2n(b3+b2−b−1)+bn(b2(n+1)−(n+3))

2 . �

We summarize all of our results by suggesting an example.

Example 3.12. Let b = 3 and n = 2. Then we obtain〈
{4 · 32+i + 1 | i ∈ N}

〉
=
〈
{4 · 32+i + 1 | i ∈ {0, 1, 2, 3}}

〉
=
〈
{4 · 32 + 1, 4 · 33 + 1, 4 · 34 + 1, 4 · 35 + 1}

〉
=
〈
37, 109, 325, 973

〉
.

Hence, the embedding dimension is e(T3,2(2)) = 2 + 2 = 4 and the Apery set is

Ap(T3,2(2), 37)

= {0, s1, 2s1, 3s1, s2, s1 + s2, 2s1 + s2, 3s1 + s2, 2s2, s1 + 2s2, 2s1 + 2s2,

3s1 + 2s2, 3s2, s3, s1 + s3, 2s1 + s3, 3s1 + s3, s2 + s3, s1 + s2 + s3,

2s1 + s2 + s3, 3s1 + s2 + s3, 2s2 + s3, s1 + 2s2 + s3, 2s1 + 2s2 + s3,

3s1 + 2s2 + s3, 3s2 + s3, 2s3, s1 + 2s3, 2s1 + 2s3, 3s1 + 2s3, s2 + 2s3,

s1 + s2 + 2s3, 2s1 + s2 + 2s3, 3s1 + s2 + 2s3, 2s2 + 2s3, s1 + 2s2 + 2s3,

2s1 + 2s2 + 2s3}
= {0, 109, 218, 327, 325, 434, 543, 652, 650, 759, 868, 977, 975, 973, 1082,

1191, 1300, 1298, 1407, 1516, 1625, 1623, 1732, 1841, 1950, 1948, 1946, 2055,

2164, 2273, 2271, 2380, 2489, 2598, 2596, 2705, 2814},

where si = 4 · 32+i + 1. Notice that #Ap(T3,2(2)) = 37 = s0 and we obtain the
Frobenius number F (T3,2(2)) = 2814 − 37 = 2777 and the genus g(T3,2(2)) =
1404.

4. Pseudo-Frobenius numbers and type of Tb,2(n)

Let us recall the definition of Pseudo-Frobenius numbers (Definition 1.14)
and we give a definition of an order relation, maximal element of the Apéry
set and a lemma which is a connection of pseudo-Frobenius numbers and the
Apéry set.
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Definition 4.1. (1) The order relation ≤S is defined as follows: a ≤S b if
b− a ∈ S [21]. In [24] it is proved that ≤S is an order relation.

(2) [21] Let S be a numerical semigroup. Then maximal elements in the
Apery set of S is defined as follows: maximals≤S

(Ap(S, x)) = {w ∈ Ap(S, x) |
w′ − w 6∈ Ap(S, x)\{0} for all w′ ∈ Ap(S, x)}.

Lemma 4.2 ([24]). Let S be a numerical semigroup and let x be a nonzero
element of S. Then

PF (S) = {w − x |w ∈ maximals≤S(Ap(S, x))}}.

Let n be an integer greater than or equal to 3. Notice that maximal elements
in Rb,2(n) are as follows:{
{2s1 + (b− 1)sn + (b− 1)sn+1}

⋃{
bsi +

n∑
k=i+1

(b− 1)sk + (b− 2)sn+1 | i ∈ {1, . . . , n− 2}

}
⋃{

bsi +

n−1∑
k=i+1

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 | i ∈ {1, 2, . . . , n− 2}

}
⋃
{bsn−1 + (b− 2)sn + (b− 1)sn+1}

}
.

Also, si+1 = bsi − (b− 1) for all i ∈ {0, 1, . . . , n} leads to{
bsi +

n−1∑
k=i+1

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 | i ∈ {1, 2, . . . , n− 2}

}
⋃
{bsn−1 + (b− 2)sn + (b− 1)sn+1}

=

{
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (b− 1), . . . ,

bs1 +
n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (n− 3)(b− 1),

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (n− 2)(b− 1)

}
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and {
bsi +

n∑
k=i+1

(b− 1)si + (b− 2)sn+1 | i ∈ {1, 2, . . . , n− 2}

}

=

{
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1,

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − (b− 1), . . . ,

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − (n− 3)(b− 1)

}
.

Hence we obtain the following lemma.

Lemma 4.3. Let n, b ∈ N, n ≥ 3, b ≥ 2 and b 6≡ 1 (mod 3). Then

maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

= maximals≤Tb,2(n)

{
2s1 + (b− 1)sn + (b− 1)sn+1,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (b− 1), . . . ,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (n− 2)(b− 1),

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1,

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − (b− 1), . . . ,

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − (n− 3)(b− 1)

}
.

As a consequence, we show the theorem related to Pseudo-Frobenius num-
bers of Tb,2.

Theorem 4.4. Let n, b ∈ N, n ≥ 3, b ≥ 2 and b 6≡ 1 (mod 3). Then

maximals≤Tb,2(n)(Ap(Tb,2(n), s0))
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=

{
2s1+ (b− 1)sn+ (b− 1)sn+1, bs1+

n−1∑
k=2

(b− 1)sk+ (b− 2)sn+ (b− 1)sn+1,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (b− 1), . . . ,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (n− 2)(b− 1),

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1

}
.

Proof. At first, note that(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1

)
(1)

−

(
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1

)
= sn+1 − sn
= (b− 1)sn − (b− 1)

and hence(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (i− 1)(b− 1)

)

−

(
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − i(b− 1)

)
= (b− 1)sn

for all 1 ≤ i ≤ n− 2. It implies that

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − i(b− 1)

6∈ maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

for all 1 ≤ i ≤ n− 2. Therefore, we have

maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

= maximals≤Tb,2(n)

{
2s1 + (b− 1)sn + (b− 1)sn+1,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1,



THE FROBENIUS PROBLEM FOR NUMERICAL SEMIGROUPS 637

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (b− 1), . . . ,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − (n− 2)(b− 1),

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1

}
.

And we will show that

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

∈ maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

for all 1 ≤ i ≤ n− 2. Note that

2s1 − s0 < 2s1 + (b− 1)sn + (b− 1)sn+1

−

(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

)
= 2s1 − (n− 1− i)(b− 1) < 2s1.

Assume that

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

6∈ maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

for some i. Then

2s1 + (b− 1)sn + (b− 1)sn+1

−

(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

)
= xs0 + ys1

and we classify the cases to get x, y which satisfy this equation.

(1) If y = 0, 2s1 − s0 < xs0 < 2s1 and we obtain x
2 <

s1
s0
< x+1

2 and since

b− 1 < s1
s0
< b, we get x = 2(b− 1) or 2(b− 1) + 1.

(a) If x = 2(b − 1), 2s1 − (n − 1 − i)(b − 1) = 2(b − 1)s0 and by
observing with taking modulo b − 1 to both sides, we get 6 ≡ 0
(mod b − 1) and since b 6≡ 1 (mod 3) implies that b = 2 or 3 but
2 (s1 − (b− 1)s0) = 2 (s0 − (b− 1)) > (n− 1− i)(b− 1) for b ≤ 3
implies that x = 2(b− 1) is not a solution.

(b) If x = 2(b − 1) + 1, 2s1 − (n − 1 − i)(b − 1) = (2(b− 1) + 1) s0
and by observing with taking modulo b − 1 to both sides, we get
6 ≡ 3 (mod b− 1) and since b 6≡ 1 (mod 3) implies that b = 2 but
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s0−2(b−1) > (n−1−i)(b−1) for b = 2 implies that x = 2(b−1)+1
is not a solution.

(2) If y = 1, s1 − s0 < xs0 < s1 and we obtain x < s1
s0
< x + 1 and since

b − 1 < s1
s0
< b, we get x = b − 1. Then the equation 2s1 − (n − 1 −

i)(b−1) = (b−1)s0 + s1 is simplified as s0− (b−1) = (n−1− i)(b−1)
but the left-hand side is always larger than the right-hand side implies
that there is no solution when y = 1.

Also, by Equation (1), we conclude that(
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1

)

−

(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

)
6∈ Tb,2.

Hence,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

∈ maximals≤Tb,2(n)(Ap(Tb,2(n), s0))

for all 1 ≤ i ≤ n− 2.
Finally, we will show that

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 ∈ maximals≤Tb,2(n)(Ap(Tb,2(n), s0)).

By Equation (1),(
bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1 − i(b− 1)

)

−

(
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1

)
= (b− 1)sn − (i+ 1)(b− 1)

and we obtain

(b− 1)sn − s0 < (b− 1)sn − (i+ 1)(b− 1) < (b− 1)sn.

But there is no element of the form (b− 1)sn − (i+ 1)(b− 1) which is in Tb,2,
and between (b − 1)sn − s0 and (b − 1)sn since (b − 1)sn = (b − 2)sn + (b −
1)sn−1 + · · ·+ (b− 1)s1 + (s1 − (n− 1)(b− 1)) and hence

(b− 1)sn − (i+ 1)(b− 1)

= (b− 2)sn + (b− 1)sn−1 + · · ·+ (b− 1)s1 + (s1 − (n+ i)(b− 1)) .

Note that s1 − (n + i)(b − 1) 6∈ Tb,2 since if it is in Tb,2, its form should be
(b− 1)s0 but s1 − (b− 1)s0 = (n+ i)(b− 1) cannot be satisfied.
Hence, it completes the proof. �
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Finally, we get this main theorem for pseudo-Frobenius numbers and type
of Tb,2(n).

Theorem 4.5. Let n, b ∈ N, b ≥ 2 and b 6≡ 1 (mod 3). Then

PF (Tb,2) = {F (Tb,2)}
⋃{

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn + (b− 1)sn+1

− i(b− 1)− s0 | i ∈ {0, 1, 2, . . . , n− 2}

}
⋃{

bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − s0

}
and hence t(Tb,2) = n+ 1.

Proof. It is directly derived from Lemma 4.2 and Theorem 4.4. �

And we show some examples related to Pseudo-Frobenius numbers.

Example 4.6. Let b = 3 and n = 2. Then

T3,2(2) = {4 · 32+i + 1 | i ∈ N} =
〈
37, 109, 325, 973

〉
and

PF (T3,2(2)) = {2814, 2598, 1950} − 37 = {2777, 2561, 1913}
= {2s1+ 2s2+ 2s3 − s0, 3s1 + s2 + 2s3 − s0, 3s1 + 2s2 + s3 − s0}.

Note that

PF (T3,2(n)) = {2s1 + 2sn + 2sn+1 − s0, 3s1 +

n−1∑
i=2

2si + sn + 2sn+1 − s0,

3s2 +

n−1∑
i=3

2si + sn + 2sn+1 − s0, . . . ,

3sn−2 + 2sn−1 + sn + 2sn+1 − s0, 3sn−1 + sn + 2sn+1,

3s1 +

n∑
i=2

2si + sn+1 − s0}.

Example 4.7. Let b = 5 and n = 3. Then

T5,2(3) = {6 · 53+i + 1 | i ∈ N}
=
〈
6 · 53 + 1(= 751), 6 · 54 + 1, 6 · 55 + 1,

6 · 56 + 1, 6 · 57 + 1, 6 · 58 + 1
〉

and

PF (T5,2(3)) = {2257510, 2250016, 2250012, 1875016} − 751

= {2256759, 2249265, 2249261, 1874265}
= {2s1 + 4s3 + 4s4 − s0, 5s1 + 4s2 + 3s3 + 4s4 − s0,

5s2 + 3s3 + 4s4 − s0, 5s1 + 4s2 + 4s3 + 3s4 − s0}.
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Note that

PF (T5,2(n)) = {2s1 + 4sn + 4sn+1 − s0, 5s1 +

n−1∑
i=2

4si + 3sn + 4sn+1 − s0,

5s2 +

n−1∑
i=3

4si + 3sn + 4sn+1 − s0, . . . ,

5sn−2 + 4sn−1 + 3sn + 4sn+1 − s0, 5sn−1 + 3sn + 4sn+1 − s0,

5s1 +

n∑
i=2

4si + 3sn+1 − s0}.

As stated in the Introduction, we give the embedding dimension, the Apery set,
the Frobenius number, genus, the Pseudo-Frobenius number and type related
to the numerical semigroup generated by Thabit number of the first kind base
b ((b + 1) · bn+i − 1) in Section 5 and the Cunningham numbers (bn+i + 1) in
Section 6 without the proofs.

5. Results related to the Tb,1(n)

If n, b ∈ N and b ≥ 2, then Tb,1(n) is a submonoid of (N,+). Moreover we
have {(b+1) · bn−1, (b+1) · bn+1−1} ⊆ Tb,1(n) and gcd((b+1) · bn−1, (b+1) ·
bn+1−1) = gcd((b+1) ·bn+1−b, (b+1) ·bn+1−1) | b−1. But (b+1) ·bn−1 ≡ 1
(mod b − 1) implies that if we let (b + 1) · bn − 1 = gα = h(b − 1) + 1 where
g = gcd((b+ 1) · bn − 1, (b+ 1) · bn+1 − 1) | b− 1 and h ∈ N then g | 1 and hence
gcd(Tb,1(n)) = 1 and Tb,1(n) is a numerical semigroup.

5.1. Embedding dimension for Tb,1(n)

Theorem 5.1. If n, b ∈ N and b ≥ 2, then
〈
{(b+1) ·bn+i−1 | i ∈ {0, 1, . . . , n+

1}}
〉

is a minimal system of generators.

By Theorem 5.1, we can identify the embedding dimension of Tb,1(n) for all
n, b ∈ N and b ≥ 2.

Corollary 5.2. Let n, b ∈ N and b ≥ 2 and let Tb,1(n) be a Thabit numerical
semigroup of the first kind base b associated with n and b. Then e(Tb,1(n)) =
n+ 2.

5.2. The Apéry set for Tb,1(n)

Lemma 5.3. Let Ab,1(n) be the set of (t1, . . . , tn+1) ∈ {0, 1, . . . , b}n+1 such
that tn+1 ∈ {0, 1, . . . , b − 1} and if tj = b, then ti = 0 for all i < j. Then

Ap(Tb,1(n), s0) ⊆ {
∑n+1

j=1 tjsj | (t1, . . . , tn+1) ∈ Ab,1(n)}.

Let Rb,1(n) be the set of the sequences (t1, . . . , tn+1) ∈ Ab,1(n) that if tn+1 =
b− 1, it satisfies the following conditions:

(1) tn ≤ b− 1.
(2) If tn = b− 1, t1 = · · · = tn−1 = 0.
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Then, we obtain the following lemma:

Lemma 5.4.

Ap(Tb,1(n), s0) =


n+1∑
j=1

tjsj | (t1, . . . , tn+1) ∈ Rb,1(n)

 .

Theorem 5.5.

F (Tb,1(n)) = (b3 + b2 − b− 1) · b2n − (b+ 1) · bn − 2b+ 3.

Example 5.6. Let b = 2. Then we obtain

F (T2,1(n)) = 9 · 22n − 3 · 2n − 1.

It is the Frobenius number of Thabit numerical semigroups suggested in [21].

To obtain the genus of the numerical semigroups generated by Thabit num-
ber of the first kind base b, we have to check the number of elements in Rb,1(n)
when one element ti is fixed.

Lemma 5.7. Let i ∈ {1, 2, . . . , n+ 1} where n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | ti = b}=

 (b2−1) · bn−i−1 if i ∈ {1, . . . , n−1},
b− 1 if i = n,
0 if i = n+ 1.

Lemma 5.8. Let i ∈ {1, 2, . . . , n− 1} where n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | ti = k} = (b+ 1)(bn−1 − bn−i−1)

for each k ∈ {1, . . . , b− 1}.

Lemma 5.9. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | tn = k} =
bn+1 − b
b− 1

for each k ∈ {1, . . . , b− 2}.

Lemma 5.10. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | tn = b− 1} = bn.

Lemma 5.11. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | tn+1 = k} =
bn+1 − 1

b− 1

for each k ∈ {1, . . . , b− 2}.

Lemma 5.12. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn+1) ∈ Rb,1(n) | tn+1 = b− 1} = bn.

By combining the above lemmas, we obtain the genus of Tb,1(n).
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Theorem 5.13. Let n, b ∈ N, n, b ≥ 2 and Tb,1(n) be the Thabit numerical
semigroup of the first kind base b associated to n. Then,

g(Tb,1(n)) =
(b3 + b2 − b− 1)b2n + {(n− 1)(b2 − 1)− 2}bn − 2b+ 4

2
.

We summarize all of our results by suggesting an example.

Example 5.14. In the case of n = 1, Tb,1(1) =
〈
s0, s1, s2

〉
=
〈
b2 + b− 1, b3 +

b2 − 1, b4 + b3 − 1
〉

and we obtain

Ap(Tb,1(1), s0) = {0, s1, . . . , bs1, s2, s1 + s2, . . . , bs1 + s2,

2s2, s1 + 2s2, . . . , bs1 + 2s2, . . . ,

(b− 1)s2, s1 + (b− 1)s2, . . . , (b− 1)s1 + (b− 1)s2}.

Note that #Ap(Tb,1(1), s0) = (b + 1) + (b − 1)(b + 1) − 1 = b2 + b − 1 = s0,
max(Ap(Tb,1(1)), s0) = (b−1)s1+(b−1)s2 and F (Tb,1(1)) = (b−1)s1+(b−1)s2−
s0 = (b−1)(b4+2b3+b2−2)−(b2+b−1) = (b3+b2−b−1)b2−(b+1)b1−2b+3 and

g(Tb,1(1)) = b5+b4−b3−b2−2b+4
2 . Let b = 3. Then we obtain the more detailed

example as follows:

(1) T3,1(1) =
〈
11, 35, 107

〉
. Note that e(T3,1(1)) = 3 = 1 + 2.

(2) Ap(T3,1(1), s0) = {0, s1, 2s1, 3s1, s2, s1 + s2, 2s1 + s2, 3s1 + s2, 2s2, s1 +
2s2, 2s1 + 2s2}. Note that #Ap(T3,1(1), s0) = 11 = s0.

(3) max(Ap(T3,1(1)), s0) = 2 · 35 + 2 · 107 = 284 and hence F (T3,1(1)) =
max(Ap(T3,1(1)), s0)− s0 = 284− 11 = 273.

(4) g(T3,1(1)) = 35+34−33−32−2·3+4
2 = 143.

5.3. Pseudo-Frobenius numbers and type of Tb,1(n)

Lemma 5.15. Let n, b ∈ N, n, b ≥ 2 and Tb,1(n) be the Thabit numerical
semigroup of the first kind base b associated to n. Then,

maximals≤Tb,1(n)(Ap(Tb,1(n)))

= maximals≤Tb,1(n)

(
{(b− 1)sn + (b− 1)sn+1 − s0}

⋃{
bsi +

n∑
k=i+1

(b− 2)sk + (b− 1)sn+1 | i ∈ {1, . . . , n− 1}

}
⋃{

bsi +

n∑
k=i+1

(b− 1)sk + (b− 2)sn+1 | i ∈ {1, . . . , n− 1}

})
.

Finally, we get this main theorem for pseudo-Frobenius numbers and type
of Tb,1(n).

Theorem 5.16. Let n, b ∈ N, n, b ≥ 2 and Tb,1(n) be the Thabit numerical
semigroup of the first kind base b associated to n. Then,

PF (Tb,1(n)) = {Fb,1(n)− i(b− 1) | i ∈ {0, 1, . . . , n− 1}}
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⋃{
bs1 +

n∑
i=2

(b− 1)si + (b− 2)sn+1 − s0

}
and hence t(Tb,1) = n+ 1.

Example 5.17. (1) If b = 3 and n = 4; PF (T3,1(4))={209625, 209623, 209621,
209619, 157131} = {2s4 + 2s5 − s0, 3s3 + s4 + 2s5 − s0, 3s2 + 2s3 + s4 + 2s +
5, 3s1 + 2s2 + 2s3 + s4 + 2s5, 3s1 + 2s2 + 2s3 + 2s4 + s5}.

(2) If b = 4 and n = 3; PF (T4,1(3)) = {306875, 306872, 306869, 245429} =
{3s3 + 3s4 − s0, 4s2 + 2s3 + 3s4 − s0, 4s1 + 3s2 + 2s3 + 3s4 − s0, 4s1 + 3s2 +
3s3 + 2s4 − s0}.

6. Results related to the SC+(b, n)

If n, b ∈ N and 2 | b, then SC+(b, n) is a submonoid of (N,+). Moreover,
we have {bn + 1, bn+1 + 1} ⊆ SC+(b, n) and g = gcd(bn + 1, bn+1 + 1) =
gcd(bn + 1, b− 1) | b− 1. However, bn + 1 ≡ 2 (mod b− 1) implies that g | 2 and
if 2 | b, 2 - bn + 1 and SC+(b, n) is a numerical semigroup.

6.1. Embedding dimension for SC+(b, n)

Theorem 6.1. If n, b ∈ N, 2 | b, and n 6= 0, then
〈
{bn+i+1 | i ∈ {0, 1, . . . , n}}

〉
is a minimal system of generators.

By Theorem 6.1, we can identify the embedding dimension of SC+(b, n) for
all n, b ∈ N and 2 | b.

Corollary 6.2. Let n, b ∈ N, 2 | b, and let SC+(b, n) be a Cunningham numer-
ical semigroup associated with n and b. Then e(SC+(b, n)) = n+ 1.

6.2. The Apéry set for SC+(b, n)

Lemma 6.3. Let Ab(n) be the set of (t1, . . . , tn) ∈ {0, 1, . . . , b}n such that if
tj = b, then ti = 0 for all i < j. Then

Ap(SC+(b, n), s0) ⊆


n∑

j=1

tjsj | (t1, . . . , tn) ∈ Ab(n)

 .

We define Rb(n) for b, n ≥ 2 and 2 | b as follows.

Definition 6.4. Let b, n ≥ 2 and 2 | b. Then Rb(n) = {(t1, t2, . . . , tn) | ti ∈
{0, 1, . . . , b}} is defined by:

(1) if ti = b, tj = 0 for all 1 ≤ j < i;
(2) tn ≤ b− 1;
(3) if tn = b− 1, then t1 ≤ 1 and all ti = 0 for i 6= 1, n.

Then we obtain the following lemma that defines the explicit form of the
Apéry set of SC+(b, n).
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Lemma 6.5. Let b, n ≥ 2 and 2 | b. Then we obtain

Ap(SC+(b, n), s0) =

{
n∑

i=1

tisi | (t1, . . . , tn) ∈ Rb(n)

}
.

Theorem 6.6. We obtain the maximal element in the Apéry set of Cunning-
ham numerical semigroups and the Frobenius number of this semigroup is ob-
tained immediately as follows.

(1) If n = 0, max(Ap(SC+(b, 0), s0)) = b+1 and F (SC+(b, 0)) = (b+1)−
s0 = b− 1.

(2) If n = 1, max(Ap(SC+(b, 1), s0)) = b3 + b and F (SC+(b, 1)) = bs1 −
s0 = b3 − 1.

(3) If n ≥ 2, Ap(SC+(b, n), s0) = {
∑n

i=1 tisi | (t1, . . . , tn) ∈ Rb(n)} im-
plies that

max(Ap(SC+(b, n), s0) = s1 + (b− 1)sn and

F (SC+(b, n)) = s1 + (b− 1)sn − s0 = (b− 1)(b2n + bn + 1).

To obtain the genus of the numerical semigroups generated by Cunningham
numbers, we must check the number of elements in Rb(n) when one element ti
is fixed.

Lemma 6.7. Let i ∈ {1, 2, . . . , n} where n ≥ 2 is an integer. Then,

#{(t1, . . . , tn) ∈ Rb(n) | ti = b} =

{
(b− 1) · bn−i−1 if i ∈ {1, . . . , n− 1},
0 if i = n.

Lemma 6.8. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn) ∈ Rb(n) | t1 = k} =

{
bn−1 − bn−i−1 + 1 if i = 1 and k = 1,
bn−1 − bn−i−1 otherwise,

for each k ∈ {1, . . . , b− 1}.

Lemma 6.9. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn) ∈ Rb(n) | tn = k} =
bn − 1

b− 1

for each k ∈ {1, . . . , b− 2}.

Lemma 6.10. Let n ≥ 2 be an integer. Then,

#{(t1, . . . , tn) ∈ Rb(n) | tn = b− 1} = 2.

Finally, we obtain the genus of a Cunningham numerical semigroup for n ≥
2.

Theorem 6.11. Let n, b ∈ N and n, b ≥ 2 where 2 | b. Then

g(SC+(b, n)) = b+
b2n(b− 1) + bn(bn− n− 1)

2
.

We summarize our results by suggesting an example.
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Example 6.12. Let b = 4 and n = 2. Then we obtain〈
{42+i + 1 | i ∈ N}

〉
=
〈
{42+i + 1 | i ∈ {0, 1, 2}}

〉
=
〈
{42 + 1, 43 + 1, 44 + 1}

〉
=
〈
17, 65, 257

〉
.

Hence, the Apery set is

Ap(SC+(4, 2), 17) = {s0, s1, 2s1, 3s1, 4s1, s2, s1 + s2, 2s1 + s2,

3s1 + s2, 4s1 + s2, 2s2, s1 + 2s2, 2s1 + 2s2,

3s1 + 2s2, 4s1 + 2s2, 3s2, s1 + 3s2}
= {0, 65, 130, 195, 260, 257, 322, 387, 452,

517, 514, 579, 644, 709, 774, 771, 836},

where si = 42+i + 1 and we obtain the Frobenius number F (SC+(4, 2)) =
836− 17 = 819.

6.3. Pseudo-Frobenius numbers and type of SC+(b, n)

Lemma 6.13. Let n, b ∈ N, n ≥ 3, b ≥ 2 and 2 | b. Then

maximals≤SC+(b,n)(Ap(SC+(b, n), s0))

= maximals≤SC+(b,n)

{
s1 + (b− 1)sn, bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn − (b− 1), . . . ,

bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn − (n− 2)(b− 1)

}
.

As a consequence, we show a theorem related to pseudo-Frobenius numbers
of SC+(b, n).

Theorem 6.14. Let n, b ∈ N, n ≥ 3, b ≥ 2, and 2 | b. Then

maximals≤SC+(b,n)(Ap(SC+(b, n), s0))

=

{
s1 + (b− 1)sn, bs1 +

n−1∑
k=2

(b− 1)sk + (b− 2)sn, bs1 +

n−1∑
k=2

(b− 1)sk

+ (b− 2)sn− (b− 1), . . . , bs1+

n−1∑
k=2

(b− 1)sk+ (b− 2)sn− (n− 2)(b− 1)

}
.

Finally, we obtain the following main theorem for pseudo-Frobenius numbers
and type of SC+(b, n).
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Theorem 6.15. Let n, b ∈ N, n ≥ 3, b ≥ 2, and 2 | b. Then

PF (SC+(b, n))

= {F (SC+(b, n))}⋃{
bs1+

n−1∑
k=2

(b− 1)sk+(b− 2)sn−i(b− 1)−s0 | i ∈ {0, 1, 2, . . . , n− 2}

}
and, hence, t(SC+(b, n)) = n.

Finally, we show two simple examples related to pseudo-Frobenius numbers.

Example 6.16. (1) Let b = 4 and n = 2. Then SC+(4, 2) = {42+i + 1 |
i ∈ N} =

〈
17, 65, 257

〉
and PF (SC+(4, 2)) = {836, 774} − 17 = {819, 757} =

{s1 + 3s2 − s0, 4s1 + 2s2 − s0}.
(2) Let b = 4 and n = 3. Then SC+(4, 3) = {43+i + 1 | i ∈ N} =〈

65, 257, 1025, 4097
〉

and PF (SC+(4, 3))={12548, 12297, 12294}−65={12483,
12232, 12229} = {s1 + 3s3 − s0, 4s1 + 3s2 + 2s3 − s0, 4s2 + 2s3 − s0}.
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