• 제목/요약/키워드: barrier gas

검색결과 537건 처리시간 0.03초

용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상 (Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method)

  • 박재혁;김순호;정재인;양지훈;이경황;이명훈
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

MNDO Studies on Intramolecular Proton Transfer Equilibria of Acetamide and Methyl Carbamate$^1$

  • Lee, Ik-Choon;Kim, Chang-Kon;Seo, Heon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권5호
    • /
    • pp.395-399
    • /
    • 1986
  • Intramolecular proton transfer equilibria of acetamide and methyl carbamate have been studied theoretically by MNDO MO method. For both substrates, carbonyl-O protonated tautomer was found to be the most stable form, the next most stable one being N-protonated form. Gas phase proton transfers take place by the 1,3-proton rearrangement process and in all cases have prohibitively high activation barriers. When however one solvate water molecule participates in the process, the barriers are lowered substantially and the process proceeds in an intermolecular manner through the intermediacy of the water molecule via a triple-well type potential energy surface; three wells correspond to reactant(RC), intermediate(IC) and product complex(PC) of proton donor-acceptor pairs whereas two transition states(TS) have proton-bridge structure. General scheme of the process can be represented for a substrate with two basic centers(heteroatoms) of A and B as, $$ABH\limits^+\;+\;H_2O\;{\to}\;ABH\limits^+{\cdots}{\limits_{RC}}OH_2\;{\to}\;AB{\cdots}H\limits_{TS}^+{\cdots}{\limits_{1}}OH_2\;{\to}\;AB{\cdots}{\limits_{IC}}H\limits^+OH_2\;{\to}\;BA{\cdots}H\limits_{TS}^+{\cdots}{\limits_{2}}OH_2\;{\to}\;BA H\limits^+{\cdots}{\limits_{PC}}OH_2\;{\to}\;BAH\limits^+\;+\;H_2O$$ Involvement of a second solvate water had negligible effect on the relative stabilities of the tautomers but lowered barrier heights by 5∼6 Kcal/mol. It was calculated that the abundance of the methoxy-O protonated tautomer of the methyl carbamate will be negligible, since the tautomer is unfavorable thermodynamically as well as kinetically. Fully optimized stationary points are reported.

가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구 (The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test)

  • 김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제37권4호
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

분위기 가스에 따른 IZO 박막의 구조적 및 전기적 특성 (Structural and electrical characteristics of IZO thin films deposited under different ambient gases)

  • 이유림;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제9권3호
    • /
    • pp.53-58
    • /
    • 2010
  • In this study, we have investigated the effect of the ambient gases on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering under various ambient gases (Ar, $Ar+O_2$ and $Ar+H_2$) at $150^{\circ}C$. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm, respectively. All the samples show amorphous structure regardless of ambient gases. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under $Ar+O_2$ while under $Ar+H_2$ atmosphere the electrical resistivity showed minimum value near 0.5sccm of $H_2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made by configuration of IZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show better current densityvoltage-luminance characteristics than that of OLED devices with the commercial crystalline-ITO (c-ITO) anode film. It can be explained that very flat surface roughness and high work function of a-IZO anode film lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers. This suggests that a-IZO film is a promising anode materials substituting conventional c-ITO anode in OLED devices.

필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰 (Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites)

  • 신하은;김채빈
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.63-69
    • /
    • 2021
  • 일체형 방열 및 기체 차단 재료 개발을 위하여 신규 고분자를 합성하고 판상형 육방정 질화 붕소(hBN) 필러를 포함하는 복합소재를 제조하였다. 복합소재는 필러의 크기 및 함량에 따라 열전도도 및 산소투과도 조절이 가능하였다. 복합소재는 최대 28.0 W·m-1·K-1의 높은 열전도도를 지녔으며 필러 미포함 샘플 대비 산소투과도는 62% 감소하였다. 열전도도 및 기체투과도 실험 측정값과 모델 예측값 비교를 통해 복합소재 내 필러의 종횡비를 계산하였다. 이러한 결과를 토대로 높은 열전도도 및 낮은 기체투과도는 필러 간 효과적인 네트워크 형성 때문이며 이는 복합소재 제조 시 전단 응력 극대화가 가능한 신규 수지의 특성으로부터 유래된것으로 사료된다. 또한, 열전도도로부터 계산된 필러 종횡비와 산소 투과도로부터 계산된 필러 종횡비 값이 서로 다름을 확인하였고 이에 관련하여 복합소재에서 열 전달 및 기체 투과 메커니즘에 대하여 고찰하였다. 본 연구에서 개발된 높은 열전도도 및 낮은 산소투과도를 갖는 고분자 복합소재는 전자 제품의 일체형 방열 및 산화 방지 재료로 사용 될 수 있다.

Assessment of Cryogenic Material Properties of R-PUF Used in the CCS of an LNG Carrier

  • Song, Ha-Cheol
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.217-231
    • /
    • 2022
  • Reinforced polyurethane foam (R-PUF), a material for liquefied natural gas cargo containment systems, is expected to have different mechanical properties depending on its stacking position of foaming as the glass fiber reinforcement of R-PUF sinks inside R-PUF under the influence of gravity. In addition, since R-PUF is not a homogeneous material, it is also expected that the coordinate direction within this material has a great correlation with the mechanical properties. So, this study was conducted to confirm this correlation with the one between the mechanical properties and the stacking position. In particular, in this study, R-PUF of 3 different densities (130, 170, and 210 kg/m3) was used, and tensile, compression, and shear tests of this material were performed under 5 temperatures. As a result of the tests, it was confirmed that the strength and modulus of elasticity of the material increased as the temperature decreased. Specifically, the strength and modulus of elasticity in the Z direction, which was the lamination direction, tended to be lower than those in the other directions. Finally, the strength and elastic modulus of different specimens of the material found at the bottom of their lamination compared to the specimens with these properties found at positions other than their lamination bottom were evaluated. Further analysis confirmed that as the temperature decreased, hardening of R-PUF occurred, indicating that the strength and modulus of elasticity increased. On the other hand, as the density of R-PUF increased, a sharp increase in strength and elastic modulus of R-PUF was observed.

산화물이 Doping된 YSZ의 고온 열처리에 따른 Monoclinic 상변화 및 미세구조 분석 (Analysis of Monoclinic Phase Change and Microstructure According to High-temperature Heat Treatment of Oxide-doped YSZ)

  • 이계원;최용석;전창우;이인환;오윤석
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.468-476
    • /
    • 2022
  • Yttria-stabilized zirconia (YSZ) has a low thermal conductivity, high thermal expansion coefficient, and excellent mechanical properties; thus, it is used as a thermal barrier coating material for gas turbines. However, during long-time exposure of YSZ to temperatures of 1200℃ or higher, a phase transformation accompanied by a volume change occurs, causing the YSZ coating layer to peel off. To solve this problem, YSZ has been doped with trivalent and tetravalent oxides to obtain coating materials with low thermal conductivity and suppressed phase transformation of zirconia. In this study, YSZ is doped with trivalent oxides, Nd2O3, Yb2O3, Al2O3, and tetravalent oxide, TiO2, and the thermal conductivity of the obtained materials is analyzed according to the composition; furthermore, the relative density change, microstructure change, and m-phase formation behavior are analyzed during long-time heat treatment at high temperatures.

Effect of Cold Plasma on Total Polyphenol Content and Anti-Inflammatory Activities of Peanut (Arachis hypogaea L.) Hull

  • Mihyang Kim;Yeo Ul Cho;Narae Han;Jin Young Lee;Yu-Young Lee;Moon Seok Kang;Hyun-Joo Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.330-330
    • /
    • 2022
  • In recent studies, cold plasma has been used to induce exudation of polyphenols and flavonoids from food materials, leading to enhancement of functional properties. And it is known that polyphenols interact with inflammation related metabolism. The objectives of this study were to investigate the effects of cold plasma treatments on the increase of total phenolic content (TPC), total flavonoid content (TFC), and anti-inflammatory activities of 'Sinpalkwang' peanut (Arachis hypogaea L.) hull. Plasma treatments were carried out using a dielectric barrier discharge gas exchange system at different radicals and temperatures (O3-25℃, O3-150℃, NOx-150℃). Significant differences in TPC, TFC, and inflammatory mediator such as nitric oxide (NO) and tumor necrosis factor a (TNF-α) in lipopolysaccharide stimulated Raw 264.7 macrophages were observed between treated and non-treated peanut hull samples (p < 0.001). Cold plasma treated samples showed higher content (TPC: 2.87-2.93 mg/g sample, TFC: 0.96-0.98 mg/g sample) than non-treated sample (TPC: 2.47 mg/g sample, TFC: 0.78 mg/g sample). Cold plasma treated samples showed lower content of NO (3.3-5.0 uM) and TNF-α (141.4-162.2 ng/mL) than non-treated sample (NO: 11.1 uM, TNF-α: 210.2 ng/mL). This study suggests that cold plasma has potential to improve functionalities of food materials and that cold plasma treated peanut hull can be used as immune enhancing materials.

  • PDF

복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가 (Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant)

  • 박희경;정시우;최유정;이민철
    • 한국안전학회지
    • /
    • 제39권2호
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

액체헬륨을 이용한 위성시험용 극저온패널 냉각시스템 개발 및 검증 (Development and Validation of Cryopanel Cooling System Using Liquid Helium for a Satellite Test)

  • 조혁진;문귀원;서희준;이상훈;홍석종;최석원
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.213-218
    • /
    • 2010
  • 인공위성 적외선 탑재체의 열싱크 역할을 위해, 액체헬륨을 이용하여 극저온패널(가로 약 800 mm, 세로 약 700 mm)을 4.2 K까지 냉각시키는 시스템을 설계, 개발, 검증하였다. 유효직경 8 m, 유효 깊이 10 m의 대형열진공챔버에서 검증된 본 냉각시스템은 500리터 용량의 액체헬륨용기 두 개(극저온 패널로의 액체헬륨 또는 저온헬륨가스 주 공급용기 및 주공급용기로의 재충진용기)를 사용하였는데, 목표인 극저온패널의 냉각 및 온도제어는 주 공급용기 내부의 미세압력조절을 통해 액체헬륨 공급유량을 제어함으로써 이루었다. 극저온패널에 공급된 후 배기되는 저온 헬륨가스는 특별히 설계, 제작된 사중진공배관의 제3층을 흐르며 열차단막의 역할을 수행함으로써, 액체헬륨 공급 라인인 제1층(중심배관)으로의 열유입을 최소화하였다. 극저온패널을 상온에서 40 K(합성표준불확도 194 mK)까지 냉각시키는데 약 3시간이 소요되었으며, 20 W의 열을 발산하는 극저온패널을 40 K 주변 온도에서 1 K 이내의 온도균일도를 가지며 유지할 수 있었다.