• 제목/요약/키워드: barrette pile

검색결과 12건 처리시간 0.02초

지반-구조물간 경계면 효과를 고려한 BARRETTE 말뚝의 거동 (Soil-Structure Interface Effects on Barrette Pile Behaviors)

  • 이상래;박성완;임대성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.102-107
    • /
    • 2009
  • Recently, the use of barrette pile is remarkably increased specially for high-rise building and bridge foundations. However, on the contrary, very few studies have been made for analyzing barrette pile behavior considering interface behavior between pile and soils around. Therefore, in this paper, these effects are evaluated by using the 3-dimensional non-linear finite element method with the results of full-scale pile load test from the fields. In addition to that, the selection of proper stiffness modulus on the pile interface is discussed.

  • PDF

대형 바렛말뚝과 현장타설말뚝의 하중전이특성 파악을 위한 재하시험 (Pile Load test on a Large Barrette Pile and a Bored Pile for the Identification of the Load Transfer Characteristics)

  • 한성길;박종관
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.493-498
    • /
    • 2006
  • In this study, two large pile load tests were performed in the deep sand gravel deposit of Nakdong river basin so that the characteristics of the load transfer was identified. The fully instrumented rectangular barrette pile in the size of $1.5\times3.0m$ and the circular bored pile of the diameter 1.5 m were placed into the ground below 50 m. Under the applied loads of 2,400 tonf and 4,000 tonf, the test results of the load transfer showed the portion of 83% and 93% of the applied loads on the barrette pile and the bored pile, respectively, were supported by the skin friction along the pile shaft. It was revealed that the most of these skin friction mobilized in sand layer underlying clay layer having N-value more than 30 and that the friction per unit area of the bored pile was larger than the friction of barrette pile. However, if embedded in the stiff sand graval layer, the both piles were proven to be sufficient for using as the friction piles.

Barrette 파일을 이용한 지열시스템의 채열 성능 예측 및 경제성 분석에 관한 연구 (An Economic Analysis and Performance Prediction for a Ground Heat Pump System with Barrette Pile)

  • 채호병;남유진;박용부
    • 설비공학논문집
    • /
    • 제25권11호
    • /
    • pp.600-605
    • /
    • 2013
  • Ground source heat pump systems (GSHP) can achieve higher performance of the system, by supplying more efficient heat source to the heat pump, than the conventional air-source heat pump system. But building clients and designers have hesitated to use GSHP systems, due to expensive initial cost, and uncertain economic feasibility. In order to reduce the initial cost, many researches have focused on the energy-pile system, using the structure of the building as a heat exchanger. Even though several experimental studies for the energy-pile system have been conducted, there was not enough data of quantitative evaluation with economic analysis and comprehensive analysis for the energy-pile. In this study, a prediction method has been developed for the energy pile system with barrette pile, using the ground heat transfer model and ground heat exchanger model. Moreover, a feasibility study for the energy pile system with barrette pile was conducted, by performance analysis and LCC assessment. As a result, it was found that the heat exchange rate of a barrette pile was 2.55 kW, and the payback period using LCC analysis was 8.8 years.

양방향재하시험을 통한 바렛말뚝의 하중-침하특성 연구 (Load-Displacement Characteristics Study of Barrette Pile by Bi-directional Loading Test)

  • 임대성;박성완;이상래
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.754-759
    • /
    • 2008
  • Recently, the construction of buildings and large bridges has been increasing rapidly causing foundation structure growing larger then before, especially in the use of large size cast-in-place piles. Barrette Pile will usually be used at the site where diaphragm wall is the retaining wall to save time and cost in mobilization of equipments. This study uses bi-directional loading test data obtained from two different sites to observe the bearing capacity and displacement characteristics of barrette pile. Numerical analysis of the test is done by using commercial 3D computer program and the interface effect and capacity of the pile as well as displacement characteristics of the pile is verified.

  • PDF

사질지반에서의 바렛말뚝의 주면하중전이 거동 평가 (Evaluation of Shear Load-transfer Barrette Pile in Sandy Soils)

  • 이상래;박성완;임대성
    • 한국지반공학회논문집
    • /
    • 제26권9호
    • /
    • pp.5-13
    • /
    • 2010
  • 최근 초고층 빌딩과 대형 교량의 사용 증가로 인하여 바렛말뚝에 대한 사용이 증가하고 있지만 바렛말뚝의 주면부 거동특성에 대한 연구는 미비한 실정이다. 이에 본 연구에서는 실물크기 시험말뚝에 대한 현장재하시험을 실시하여 표준관입시험 저항치와 바렛말뚝의 주면히중전이곡선을 산정하는 경험식을 제안하였다. 또한 3차원 유한요소해석을 실시하여 말뚝과 지반과의 경계면 효과를 살펴보았으며 이를 현장자료와 비교하여 평가하였다.

바렛말뚝의 형상비와 지반 강성에 따른 주면마찰력의 수치해석적 평가 (Numerical Evaluation of Skin Friction of Barrette Piles by Aspect Ratio and Soil Strength Changes)

  • 김채민;전병한;전준서;김태형;최정표
    • 한국지반신소재학회논문집
    • /
    • 제21권4호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 바렛말뚝의 형상비 및 말뚝 주변 지반 강성 변화가 주면마찰력에 미치는 영향을 분석하였다. 유한요소 프로그램을 활용하여 부산 OO현장의 바렛말뚝 정재하시험 결과를 역해석 하였으며 이를 바탕으로 형상비 및 말뚝 주변 지반의 강성을 달리하여 총 36개의 수치해석을 수행하였다. 그 결과, 바렛말뚝의 형상비가 커질수록 주면마찰력은 증가하였으며 극한상태에 다다를수록 그 영향이 커짐을 확인할 수 있었다. 또한 말뚝 주변 지반 강성 변화에 따른 형상비 및 주면마찰력의 상관관계를 분석하였다.

양방향 재하시험결과를 활용한 바렛말뚝의 하중전이특성 평가 (Evaluation of Load Transfer Characteristics of Barrette Pile Based on Bi-directional Loading Tests)

  • 박성완;임대성
    • 대한토목학회논문집
    • /
    • 제29권2C호
    • /
    • pp.41-49
    • /
    • 2009
  • 구조물의 대형화와 재료비의 증가로 인해 다수의 기성말뚝을 대체할 수 있는 대형 현장타설말뚝의 사용이 증가하고 있다. 특히, 지하연속벽공법이 적용된 현장의 기초시공에 따른 시공성 및 경제성을 향상시키거나 토사층이 깊게 분포한 경우 공벽의 안정성을 확보하기 위한 기초형식으로 바렛말뚝의 사용이 증가하고 있는 실정이다. 본 논문에서는 국내 4개 현장을 대상으로 바렛말뚝을 시공하고 양방향 재하시험을 실시하여 말뚝의 지지력 및 침하특성을 고찰하였다. 또한 하중전이분석을 통하여 주면마찰력의 평가를 위한 ${\beta}$값을 분석하여 비교 평가하였고 3차원 유한요소해석을 통하여 양방향재하시험에 따른 경계면 효과와 하중-침하특성을 살펴보았다.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

국외 초고층 건축물의 대형기초 적용 사례 (A Case Study on the Design of High Capacity Foundations for High-Rise Buildings)

  • 조성한;한병권;이제만;김태범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.78-89
    • /
    • 2007
  • Two design examples of deep foundations for high-rise buildings on soft ground are introduced in this paper. The first one is a 54-story building in Ho-Chi-Minh city, Vietnam, which was designed to be founded on $2.8m{\times}1.0m$ barrette foundations with approximately 60m to 75m depth. Based on a number of design guides and existing load test data from the construction sites in Ho-Chi-Minh city, the capacity of a barrette foundation in sand or clay layered ground was calculated to be 17.2MN to 27.8MN depending on the installing depth. The second one is a 40-story building in Baku city, Azerbaijan, which was designed to be supported by 2.0m diameter bored pile foundations with approximately 23m depth. As analytical or empirical guides for the local ground conditions were very limited, the design procedure from the SNiP Code, one of Russian specifications, was adopted and used to calculate the pile capacity. The capacity of bored pile foundation in highly weathered soil was expected to be 14.8MN to 15.5MN depending on the boring depth.

  • PDF

초고층 건축물 대형기초의 시공 사례 (바레트 말뚝 중심) (A Construction Case of Massive Foundation for High Rise Building (A Case of Barrette Pile))

  • 정경환;정동영;문준배;김동준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.90-104
    • /
    • 2007
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition and the preference of landmark. For this reason, it is definitely required to extend pile diameter and install the pilein deep foundation to support superstructure. The pile method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The Bored Pile method has applied to minimize those problems. As above shown, this article will be presented construction case study of Barrette Pile and R.C.D in order to make a counterproposal for the quality control of a large building foundation work.

  • PDF