• Title/Summary/Keyword: balancing control

Search Result 636, Processing Time 0.023 seconds

Individual DC Voltage Balancing Method at Zero Current Mode for Cascaded H-bridge Based Static Synchronous Compensator

  • Yang, Zezhou;Sun, Jianjun;Li, Shangsheng;Liao, Zhiqiang;Zha, Xiaoming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.240-249
    • /
    • 2018
  • Individual DC voltage balance problem is an inherent issue for cascaded H-bridge (CHB) based converter. When the CHB-based static synchronous compensator (STATCOM) is operating at zero current mode, the software-based individual DC voltage balancing control techniques may not work because of the infinitesimal output current. However, the different power losses of each cell would lead to the individual DC voltages unbalance. The uneven power losses on the local supplied cell-controllers (including the control circuit and drive circuit) would especially cause the divergence of individual DC voltages, due to their characteristic as constant power loads. To solve this problem, this paper proposes an adaptive voltage balancing module which is designed in the cell-controller board with small size and low cost circuits. It is controlled to make the power loss of the cell a constant resistance load, thus the DC voltages are balanced in zero current mode. Field test in a 10kV STATCOM confirms the performance of the proposed method.

Optimal SOC Reference Based Active Cell Balancing on a Common Energy Bus of Battery

  • Bae, SunHo;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • This paper presents a study on the state-of-charge (SOC) reference based active cell balancing in real-time. The optimal references of SOC are determined by using the proposed active cell balancing system with the bidirectional DC/DC converters via the dual active bridge (DAB) type. Then, the energies between cells can be balanced by the power flow control of DAB based bidirectional DC/DC converters. That is, it provides the effective management of battery by transferring energy from the strong cell to the weak one until the cell voltages are equalized to the same level and therefore improving the additional charging capacity of battery. In particular, the cell aging of battery and power loss caused from energy transfer are considered. The performances of proposed active cell balancing system are evaluated by an electromagnetic transient program (EMTP) simulation. Then, the experimental prototype is implemented in hardware to verify the usefulness of proposed system.

A Development of a Counter Balancing Experimental Equipment (카운터 밸런싱 실습장치 개발)

  • Ryu, Jae-Hu;Huh, Jun-Young
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.5 no.1
    • /
    • pp.20-27
    • /
    • 2013
  • The counter balancing is a technique to control a load which is acting to actuator when the load changes from a resistance state to over running state according to the structural change of the load for the case of lifting or carrying a heavy load in industrial site. Even though this technique is frequently used in industrial site, there is no widely known design procedure and educational equipment in home and abroad. Therefore, in this study a new idea was presented to develop an counter balancing educational equipment. The idea was realized through the process of system modeling and simulation, drawing out of design parameters, manufacturing of a prototype. Finally the usefulness of this developed educational equipment was demonstrated by experiments. It is expected that by using this equipment a big help would be given to students who should understand the counter balancing equipment which is frequently encountered in industrial site.

  • PDF

Fast Voltage-Balancing Scheme for a Carrier-Based Modulation in Three-Phase and Single-Phase NPC Three-Level Inverters

  • Chen, Xi;Huang, Shenghua;Jiang, Dong;Li, Bingzhang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1986-1995
    • /
    • 2018
  • In this paper, a novel neutral-point voltage balancing scheme for NPC three-level inverters using carrier-based sinusoidal pulse width modulation (SPWM) method is developed. The new modulation approach, based on the obtained expressions of zero sequence voltage in all six sectors, can significantly suppress the low-frequency voltage oscillation in the neutral point at high modulation index and achieve a fast voltage-balancing dynamic performance. The implementation of the proposed method is very simple. Another attractive feature is that the scheme can stably control any voltage difference between the two dc-link capacitors within a certain range without using any extra hardware. Furthermore, the presented scheme is also applicable to the single-phase NPC three-level inverter. It can maintain the neutral-point voltage balance at full modulation index and improve the voltage-balancing dynamic performance of the single-phase NPC three-level inverter. The performance of the proposed strategy and its benefits over other previous techniques are verified experimentally.

Coupled Inductor Based Voltage Balancing in Dual-Output CLL Resonant Converter for Bipolar DC Distribution System (양극성 DC 배전 시스템 적용을 위한 결합 인덕터 기반의 전압 밸런싱 이중 출력 CLL 공진형 컨버터)

  • Lee, Seunghoon;Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.348-355
    • /
    • 2022
  • A bipolar DC distribution system suffers from an imbalance in voltages when asymmetric loads are connected at the outputs. Dedicated voltage balancers are required to address the imbalance in bipolar voltage levels. However, additional components eventually increase the cost and decrease the efficiency and power density of the system. Therefore, to deal with the imbalance in output voltages without adding any extra components, this study presents a coupled inductor-based voltage balancing technique with a dual-output CLL resonant converter. The proposed coupled inductor does not require extra magnetic components to balance the output voltages because it is the result of resonant inductors of the CLL tank circuit. It can also avoid complex control schemes applied to voltage balancing. Moreover, with the proposed coupled inductor, the CLL converter acquires good features including zero voltage and zero current switching. Detailed analysis of the proposed coupled inductor is presented with different load conditions. A 3.6-kW hardware prototype was built and tested to validate the performance of the proposed coupled inductor-based voltage balancing technique.

Load Balancing Technique by Dynamic Flow Management in SDN Environment (SDN 환경에서 Dynamic Flow Management에 의한 Load Balancing 기법)

  • Taek-Young, Kim;Tae-Wook, Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1047-1054
    • /
    • 2022
  • With the advent of SDN, a next-generation network technology that separates the hardware and software areas of network equipment and defines the network using open source-based software, it solves the problems of complexity and scalability of the existing network system. It is now possible to configure a custom network according to the requirements. However, it has a structural disadvantage that a load on the network may occur due to a lot of control communication occurring between the controller and the switch, and many studies on network load distribution to effectively solve this have been preceded. In particular, in previous studies of load balancing techniques related to flow tables, many studies were conducted without consideration of flow entries, and as the number of flows increased, the packet processing speed decreased and the load was increased. To this end, we propose a new network load balancing technique that monitors flows in real time and applies dynamic flow management techniques to control the number of flows to an appropriate level while maintaining high packet processing speed.

A MULTIPATH CONGESTION CONTROL SCHEME FOR HIGH-QUALITY MULTIMEDIA STREAMING

  • Lee, Sunghee;Chung, Kwangsue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.414-435
    • /
    • 2017
  • As network adaptive streaming technology becomes increasingly common, transport protocol also becomes important in guaranteeing the quality of multimedia streaming. At the same time, because of the appearance of high-quality video such as Ultra High Definition (UHD), preventing buffering as well as preserving high quality while deploying a streaming service becomes important. The Internet Engineering Task Force recently published Multipath TCP (MPTCP). MPTCP improves the maximum transmission rate by simultaneously transmitting data over different paths with multiple TCP subflows. However, MPTCP cannot preserve high quality, because the MPTCP subflows slowly increase the transmission rate, and upon detecting a packet loss, drastically halve the transmission rate. In this paper, we propose a new multipath congestion control scheme for high-quality multimedia streaming. The proposed scheme preserves high quality of video by adaptively adjusting the increasing parameter of subflows according to the network status. The proposed scheme also increases network efficiency by providing load balancing and stability, and by supporting fairness with single-flow congestion control schemes.

An Isolated Bidirectional Modular Multilevel DC/DC Converter for Power Electronic Transformer Applications

  • Wang, Zhaohui;Zhang, Junming;Sheng, Kuang
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.861-871
    • /
    • 2016
  • With high penetration of renewable energies, power electronic transformers (PETs) will be one of the most important infrastructures in the future power delivery and management system. In this study, an isolated bidirectional modular multilevel DC/DC converter is proposed for PET applications. A modular multilevel structure is adopted as switching valves to sustain medium voltages to achieve modular design and high reliability. Only one high-frequency transformer is used in the proposed converter, which significantly simplifies the circuit and galvanic insulation design. A dual-phase-shift modulation strategy is proposed to regulate the output power and achieve a simple voltage balancing control. A down-scaled (2 kW/20 kHz) prototype is constructed to demonstrate the proposed converter and verify the control strategy. The experimental results comply with the theoretical analysis well, with the highest power efficiency reaching 97.6%.

Development of Flow Control Valves for Hot Water Distribution Manifolds (온수분배기용 유량제어밸브의 개발)

  • Kwon, Woo-Chul;Yoon, Joon-Yong;Yoo, Sun-Hak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.4
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.