• Title/Summary/Keyword: bacterial microbiota

Search Result 157, Processing Time 0.03 seconds

Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets

  • Recharla, Neeraja;Balasubramanian, Balamuralikrishnan;Song, Minho;Puligundla, Pradeep;Kim, Soo-ki;Jeong, Jin Young;Park, Sungkwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.575-592
    • /
    • 2021
  • In livestock nutrition, natural feed additives are gaining increased attention as alternatives to antibiotic growth promoters to improve animal performance. This study investigated the effects of dietary turmeric supplementation on the growth performance and gut health of weaned piglets. A total of 48 weaned piglets (Duroc × [Landrace × Yorkshire]) were used in a 6-week feeding trial. All piglets were allotted to two dietary treatments: corn-soybean meal basal diet without turmeric (control) and with 1% weight per weight (w/w) turmeric powder (turmeric). The results showed that dietary inclusion of turmeric with the basal diet improved final body weight and total average daily gain (p < 0.05). The concentrations of short-chain fatty acids in the fecal samples, including acetic, butyric, and propionic acids, were higher in the turmeric group (p < 0.05). The villus height-to-crypt depth ratio was higher in the ileum of turmeric-fed piglets (p = 0.04). The 16S rRNA gene sequencing of fecal microbiota indicated that, at the phylum level, Firmicutes and Bacteroidetes were the most predominant taxa in all fecal samples. Bacteroidetes were significantly decreased in the turmeric group compared to the control group (p = 0.021). At the genus level, turmeric showed a decreased abundance of Prevotella (p = 0.021) and an increasing trend of Lactobacillus (p = 0.083). Among the total detected species, nine bacterial species showed significant differences between the two groups. The results of this study indicated that turmeric altered the gut microbiota and shortchain fatty acid production. This suggests that turmeric could be used as a potential alternative growth promoter for piglets.

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice

  • Cho, Hye-Won;Rhee, Ki-Jong;Eom, Yong-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1640-1650
    • /
    • 2020
  • Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.

Comparison Analysis of Swine Gut Microbiota between Landrace and Yorkshire at Various Growth Stages (두 돼지 종의 다양한 성장단계에 따른 장내미생물 비교분석)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.308-312
    • /
    • 2014
  • In this study, we conducted a next generation sequencing based microbial community analysis to investigate gut microbiota of the two commercially most available swine breeds, Yorkshire and Landrace. Bacterial 16S rRNA gene was amplified from fecal DNA using universal primer sets designed for V4 regions. Our comparison analysis of the gut microbiota of the two breeds suggested that their gut microbiota changed depending on the growth stages, while the difference between the two breeds was insignificant. However, there was a limited number of genera, the abundance of which was found to be different between the breeds. Those included the genus Xylanibacter in the Yorkshire samples, which was previously reported as a fiber digesting bacteria, likely increasing energy harvesting capacity of swine. In addition, others included opportunistic pathogens mostly found in the Yorkshire samples while the Landrace samples had significantly more prevalent Clostridium_IV species that were known to play a key role in systemic immunity of hosts. While microbial community shifts was found to be associated with growth stages, the difference between the two breeds seemed to be insignificant. However, there were several bacterial genera showing differential abundance, which may affect growth of hosts.

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim;Shuya Zhang ;Ying Zhu;Ruirui Wang;Jianxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.627-637
    • /
    • 2023
  • Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

Simulative Study of Effects of LM Microorganism on Environment: Analyses of Metabolomes and Soil Microbial Communities (LM 미생물의 환경영향 모사: 대사체와 토양미생물군 분석)

  • Lee, Ji-Hoon;Ki, Min-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.197-204
    • /
    • 2019
  • BACKGROUND: Living modified microorganisms (LMMs) have been focused in two very different aspects of positive and negative effects on ecology and human health. As a model experiment, wild type and a foreign origin gene-harboring modified E. coli strains were subjected to comparison of their metabolomes and potential effects on soil microbiota in the laboratory sets. This study assumes the unintentional release of LMMs and tries to suggest potential effects on the soil microbiota even at minimal settings. METHODS AND RESULTS: Metabolomes from the wild type and LM E. coli were analyzed by NMR and the profiles were compared. In the laboratory soil experiments, the two types of E. coli were added to the soils and monitored for the bacterial community compositions. Those metabolomic profiles did not show significant differences. The microbial community structures from the time series soil DNAs for both the sets using wild type and LMO also did not indicate significant changes, but minor by the addition of foreign organisms regardless of wild or LMO. CONCLUSION: Even if the recombinant microorganism (LMO) is released into the soil environment, the survival of microorganisms in the environment would be one of the major factors for the transfers of foreign genes to other organisms and diffusion into the soil environment.

Diversity of Duodenal and Rectal Microbiota in Biopsy Tissues and Luminal Contents in Healthy Volunteers

  • Li, Gangping;Yang, Min;Zhou, Kan;Zhang, Lei;Tian, Lugao;Lv, Shangze;Jin, Yu;Qian, Wei;Xiong, Hanhua;Lin, Rong;Fu, Yu;Hou, Xiaohua
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1136-1145
    • /
    • 2015
  • The diverse microbial communities that colonize distinct segments of the gastrointestinal tract are intimately related to aspects of physiology and the pathology of human health. However, most recent studies have focused on the rectal or fecal microbiota, and the microbial signature of the duodenum is poorly studied. In this study, we compared the microbiota in duodenal and rectal samples to illustrate the characteristic microbial signatures of the duodenum in healthy adults. Nine healthy volunteers donated biopsies and luminal contents from the duodenum and rectum. To determine the composition and diversity of the microbiota, 454-pyrosequencing of bacterial 16S rRNA was performed and multiple bioinformatics analyses were applied. The α-diversity and phylogenetic diversity of the microbiota in the duodenal samples were higher than those of the rectal samples. There was higher biodiversity among the microbiota isolated from rectal biopsies than feces. Proteobacteria were more highly represented in the duodenum than in the rectum, both in the biopsies and in the luminal contents from the healthy volunteers (38.7% versus 12.5%, 33.2% versus 5.0%, respectively). Acinetobacter and Prevotella were dominant in the duodenum, whereas Bacteroides and Prevotella were dominant in the rectum. Additionally, the percentage of OTUs shared in biopsy groups was far higher than in the luminal group (43.0% versus 26.8%) and a greater number of genera was shared among the biopsies than the luminal contents. Duodenal samples demonstrated greater biological diversity and possessed a unique microbial signature compared with the rectum. The mucosa-associated microbiota was more relatively conserved than luminal samples.

A Review on Bifidobacteria for Human Health (비피도박테리아가 건강에 미치는 영향에 대한 고찰)

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2017
  • The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. Evidence is increasingly accumulating which shows beneficial effects of supplementation with Bifidobacteria for the improvement of human health conditions ranging from protection against infection to various positive effects. However, Bifidobacterium has not been actively studied while consumption of probiotics has greatly been increased as functional foods in Korea. The aim of this article is to introduce various studies and excellent reviews on the role of Bifidobacteria for human health.

Context-Dependent Regulation of Type17 Immunity by Microbiota at the Intestinal Barrier

  • Begum Akuzum;June-Yong Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.6
    • /
    • pp.46.1-46.25
    • /
    • 2022
  • T-helper-17 (Th17) cells and related IL-17-producing (type17) lymphocytes are abundant at the epithelial barrier. In response to bacterial and fungal infection, the signature cytokines IL-17A/F and IL-22 mediate the antimicrobial immune response and contribute to wound healing of injured tissues. Despite their protective function, type17 lymphocytes are also responsible for various chronic inflammatory disorders, including inflammatory bowel disease (IBD) and colitis associated cancer (CAC). A deeper understanding of type17 regulatory mechanisms could ultimately lead to the discovery of therapeutic strategies for the treatment of chronic inflammatory disorders and the prevention of cancer. In this review, we discuss the current understanding of the development and function of type17 immune cells at the intestinal barrier, focusing on the impact of microbiota-immune interactions on intestinal barrier homeostasis and disease etiology.

Characterization of the Biodiversity of the Spoilage Microbiota in Chicken Meat Using Next Generation Sequencing and Culture Dependent Approach

  • Lee, Hee Soo;Kwon, Mirae;Heo, Sunhak;Kim, Min Gon;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.535-541
    • /
    • 2017
  • This study investigated the psychrotrophic bacteria isolated from chicken meat to characterize their microbial composition during refrigerated storage. The bacterial community was identified by the Illumina MiSeq method based on bacterial DNA extracted from spoiled chicken meat. Molecular identification of the isolated psychrotrophic bacteria was carried out using 16S rDNA sequencing and their putrefactive potential was investigated by the growth at low temperature as well as their proteolytic activities in chicken meat. From the Illumina sequencing, a total of 187,671 reads were obtained from 12 chicken samples. Regardless of the type of chicken meat (i.e., whole meat and chicken breast) and storage temperatures ($4^{\circ}C$ and $10^{\circ}C$), Pseudomonas weihenstephanensis and Pseudomonas congelans were the most prominent bacterial species. Serratia spp. and Acinetobacter spp. were prominent in chicken breast and whole chicken meat, respectively. The 118 isolated strains of psychrotrophic bacteria comprised Pseudomonas spp. (58.48%), Serratia spp. (10.17%), and Morganella spp. (6.78%). All isolates grew well at $10^{\circ}C$ and they induced different proteolytic activities depending on the species and strains. Parallel analysis of the next generation sequencing and culture dependent approach provides in-depth information on the biodiversity of the spoilage microbiota in chicken meat. Further study is needed to develop better preservation methods against these spoilage bacteria.

Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers

  • Oh, Ju Kyoung;Pajarillo, Edward Alain B.;Chae, Jong Pyo;Kim, In Ho;Kang, Dae-Kyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1332-1339
    • /
    • 2017
  • Objective: This study investigated the effects of Bacillus subtilis CSL2 (B. subtilis CSL2) administration before Salmonella challenge on the fecal microbiota and microbial functionality of Hy-line Brown (HLB) laying hens. Methods: Fecal samples were collected from control (CON), Salmonella-infected (SAL) and Salmonella-infected, probiotic-treated (PRO) groups before and after Salmonella challenge for microbiome analysis using 16S rRNA gene pyrosequencing. Results: Infection with Salmonella led to decreased microbial diversity in hen feces; diversity was recovered with Bacillus administration. In addition, Salmonella infection triggered significant alterations in the composition of the fecal microbiota. The abundance of the phylum Firmicutes decreased while that of Proteobacteria, which includes a wide variety of pathogens, increased significantly. Bacillus administration resulted in normal levels of abundance of Firmicutes and Proteobacteria. Analysis of bacterial genera showed that Salmonella challenge decreased the population of Lactobacillus, the most abundant genus, and increased populations of Pseudomonas and Flavobacterium genera by a factor of 3 to 5. On the other hand, Bacillus administration caused the abundance of the Lactobacillus genus to recover to control levels and decreased the population of Pseudomonas significantly. Further analysis of operational taxonomic units revealed a high abundance of genes associated with two-component systems and secretion systems in the SAL group, whereas the PRO group had more genes associated with ribosomes. Conclusion: The results of this study indicate that B. subtilis CSL2 administration can modulate the microbiota in HLB laying hens, potentially acting as a probiotic to protect against Salmonella Gallinarum infection.