Browse > Article
http://dx.doi.org/10.4014/jmb.2006.06034

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice  

Cho, Hye-Won (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
Rhee, Ki-Jong (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University at Wonju)
Eom, Yong-Bin (Department of Medical Sciences, College of Medical Sciences, Soonchunhyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.11, 2020 , pp. 1640-1650 More about this Journal
Abstract
Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.
Keywords
Colorectal cancer; ETBF; inflammation; microbial diversity; zerumbone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.   DOI
2 Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Micr. 67: 1613.   DOI
3 Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. 2013. The gut microbiome modulates colon tumorigenesis. mBio 4: e00692-00613.
4 Sokol H, Seksik P, Rigottier-Gois L, Lay C, Lepage P, Podglajen I, et al. 2006. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel. Dis. 12: 106-111.   DOI
5 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. 2005. Diversity of the human intestinal microbial flora. Science 308: 1635-1638.   DOI
6 Costello EK, Gordon JI, Secor SM, Knight R. 2010. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4: 1375-1385.   DOI
7 Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803.   DOI
8 Antunes EN, Ferreira EO, Falcao LS, Paula GR, Avelar KE, Barroso DE, et al. 2004. Non-toxigenic pattern II and III Bacteroides fragilis strains: coexistence in the same host. Res. Microbiol. 155: 522-524.   DOI
9 Chan JL, Wu S, Geis AL, Chan GV, Gomes TAM, Beck SE, et al. 2019. Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal. Immunol. 12: 164-177.   DOI
10 Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152.   DOI
11 Guinane CM, Lawton EM, O'Connor PM, O'Sullivan O, Hill C, Ross RP, et al. 2016. The bacteriocin bactofencin a subtly modulates gut microbial populations. Anaerobe 40: 41-49.   DOI
12 Siegel RL, Miller KD, Jemal A. 2018. Cancer statistics, 2018. CA Cancer J. Clin. 68: 7-30.   DOI
13 Brenner H, Kloor M, Pox CP. 2014. Colorectal cancer. Lancet 383: 1490-1502.   DOI
14 Thomas AM, Jesus EC, Lopes A, Aguiar S, Jr., Begnami MD, Rocha RM, et al. 2016. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling. Front. Cell. Infect. Microbiol. 6: 179.
15 Hwang S, Jo M, Hong JE, Park CO, Lee CG, Rhee K-J. 2020. Protective effects of zerumbone on colonic tumorigenesis in Enterotoxigenic Bacteroides Fragilis (ETBF)-colonized AOM/DSS BALB/c Mice. Int. J. Med. Sci. 21: 857.
16 Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, et al. 2019. Zerumbone suppresses enterotoxigenic Bacteroides fragilis infectioninduced colonic inflammation through inhibition of NF-κΒ. Int. J. Med. Sci. 20: 4560.
17 Gao Z, Guo B, Gao R, Zhu Q, Qin H. 2015. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6: 20.   DOI
18 Corr SC, Li Y, Riedel CU, O'Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 104: 7617-7621.   DOI
19 Marchesi JR, Dutilh BE, Hall N, Peters WH, Roelofs R, Boleij A, et al. 2011. Towards the human colorectal cancer microbiome. PLoS One 6: e20447.   DOI
20 Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, et al. 2011. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut. 60: 631-637.   DOI
21 Brennan CA, Garrett WS. 2016. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70: 395-411.   DOI
22 Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157: 121-141.   DOI
23 Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. 2012. Intestinal inflammation targets cancerinducing activity of the microbiota. Science 338: 120-123.   DOI
24 Wang CZ, Huang WH, Zhang CF, Wan JY, Wang Y, Yu C, et al. 2018. Role of intestinal microbiome in American ginseng-mediated colon cancer prevention in high fat diet-fed AOM/DSS mice [corrected]. Clin. Transl. Oncol. 20: 302-312.   DOI
25 Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9: 123.   DOI
26 Kabeerdoss J, Jayakanthan P, Pugazhendhi S, Ramakrishna BS. 2015. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J. Med. Res. 142: 23-32.   DOI
27 Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. 2017. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 17: 120.   DOI
28 Ramakrishna BS. 2013. Role of the gut microbiota in human nutrition and metabolism. J. Gastroen. Hepatol. 28 Suppl 4: 9-17.   DOI
29 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102: 11070-11075.   DOI
30 Janem WF, Scannapieco FA, Sabharwal A, Tsompana M, Berman HA, Haase EM, et al. 2017. Salivary inflammatory markers and microbiome in normoglycemic lean and obese children compared to obese children with type 2 diabetes. PLoS One 12: e0172647.   DOI
31 Sun J, Kato I. 2016. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 3: 130-143.   DOI
32 Santosh Kumar SC, Srinivas P, Negi PS, Bettadaiah BK. 2013. Antibacterial and antimutagenic activities of novel zerumbone analogues. Food Chem. 141: 1097-1103.   DOI
33 Kim HR, Rhee KJ, Eom YB. 2019. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 57: 99-106.   DOI
34 Deng H, Li Z, Tan Y, Guo Z, Liu Y, Wang Y, et al. 2016. A novel strain of Bacteroidesfragilis enhances phagocytosis and polarises M1 macrophages. Sci. Rep. 6: 29401.   DOI
35 Kononen E, Asikainen S, Jousimies-Somer H. 1992. The early colonization of gram-negative anaerobic bacteria in edentulous infants. Oral. Microbiol. Immunol. 7: 28-31.   DOI
36 Troy EB, Kasper DL. 2010. Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front. Biosci. 15: 25-34.   DOI
37 Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463.   DOI
38 Kwon KH, Barve A, Yu S, Huang MT, Kong AN. 2007. Cancer chemoprevention by phytochemicals: potential molecular targets, biomarkers and animal models. Acta. Pharmacol. Sin. 28: 1409-1421.   DOI
39 Kim H-R, Rhee K-J, Eom Y-B. 2019. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 57: 99-106.   DOI
40 Wang Y, Deng H, Li Z, Tan Y, Han Y, Wang X, et al. 2017. Safety evaluation of a novel strain of Bacteroides fragilis. Front. Microbiol. 8: 435.
41 Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA. 2011. Zingiber zerumbet (L.) Smith: A review of its ethnomedicinal, chemical, and pharmacological uses. Evid. Based. Complement. Alternat. Med. 2011: 543216.
42 Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, et al. 2014. Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. Biomed. Res. Int. 2014: 920742.
43 Moreira da Silva T, Pinheiro CD, Puccinelli Orlandi P, Pinheiro CC, Soares Pontes G. 2018. Zerumbone from Zingiber zerumbet (L.) smith: a potential prophylactic and therapeutic agent against the cariogenic bacterium Streptococcus mutans. BMC Complement Altern. Med. 18: 301.   DOI
44 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.   DOI
45 Yodkeeree S, Sung B, Limtrakul P, Aggarwal BB. 2009. Zerumbone enhances TRAIL-induced apoptosis through the induction of death receptors in human colon cancer cells: Evidence for an essential role of reactive oxygen species. Cancer Res. 69: 6581-6589.   DOI
46 Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al. 2010. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia 81: 855-858.   DOI
47 Hwang S, Jo M, Hong JE, Park CO, Lee CG, Yun M, et al. 2019. Zerumbone suppresses enterotoxigenic Bacteroidesfragilis infectioninduced colonic inflammation through inhibition of NF-kappaBeta. Int. J. Mol. Sci. 20: 4560.   DOI
48 Hwang S, Lee CG, Jo M, Park CO, Gwon SY, Hwang S, et al. 2020. Enterotoxigenic Bacteroides fragilis infection exacerbates tumorigenesis in AOM/DSS mouse model. Int. J. Med. Sci. 17: 145-152.   DOI
49 Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. 2014. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2: 6.   DOI
50 Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13: 31.   DOI
51 Eddy SR. 2011. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7: e1002195.   DOI
52 Lee B, Moon T, Yoon S, Weissman T. 2017. DUDE-Seq: Fast, flexible, and robust denoising for targeted amplicon sequencing. PLoS One 12: e0181463.   DOI
53 Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.   DOI
54 Myers EW, Miller W. 1988. Optimal alignments in linear space. CABIOS 4: 11-17.