Browse > Article
http://dx.doi.org/10.7845/kjm.2014.4078

Comparison Analysis of Swine Gut Microbiota between Landrace and Yorkshire at Various Growth Stages  

Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Publication Information
Korean Journal of Microbiology / v.50, no.4, 2014 , pp. 308-312 More about this Journal
Abstract
In this study, we conducted a next generation sequencing based microbial community analysis to investigate gut microbiota of the two commercially most available swine breeds, Yorkshire and Landrace. Bacterial 16S rRNA gene was amplified from fecal DNA using universal primer sets designed for V4 regions. Our comparison analysis of the gut microbiota of the two breeds suggested that their gut microbiota changed depending on the growth stages, while the difference between the two breeds was insignificant. However, there was a limited number of genera, the abundance of which was found to be different between the breeds. Those included the genus Xylanibacter in the Yorkshire samples, which was previously reported as a fiber digesting bacteria, likely increasing energy harvesting capacity of swine. In addition, others included opportunistic pathogens mostly found in the Yorkshire samples while the Landrace samples had significantly more prevalent Clostridium_IV species that were known to play a key role in systemic immunity of hosts. While microbial community shifts was found to be associated with growth stages, the difference between the two breeds seemed to be insignificant. However, there were several bacterial genera showing differential abundance, which may affect growth of hosts.
Keywords
growth promoter; gut microbiota; swine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alvarez-Ordonez, A., Martinez-Lobo, F.J., Arguello, H., Carvajal, A., and Rubio, P. 2013. Swine dysentery: aetiology, pathogenicity, determinants of transmission and the fight against the disease. Int. J. Environ. Res. Public Health 10, 1927-1947.   DOI
2 Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., and et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621-1624.   DOI
3 Casewell, M., Friis, C., Marco, E., McMullin, P., and Phillips, I. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159-161.   DOI   ScienceOn
4 Castillo, M., Martin-Orue, S.M., Roca, M., Manzanilla, E.G., Badiola, I., Perez, J.F., and Gasa, J. 2006. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci. 84, 2725-2734.   DOI
5 Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and Tiedje, J.M. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-145.   DOI   ScienceOn
6 De Smet, S., De Zutter, L., Debruyne, L., Vangroenweghe, F., Vandamme, P., and Houf, K. 2011. Arcobacter population dynamics in pigs on farrow-to-finish farms. Appl. Environ. Microbiol. 77, 1732 -1738.   DOI
7 Degnan, P.H. and Ochman, H. 2012. Illumina-based analysis of microbial community diversity. ISME J. 6, 183-194.   DOI
8 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.   DOI   ScienceOn
9 Foster, E.K. 2003. METASTATS: behavioral science statistics for Microsoft Windows and the HP49G programmable calculator. Behav. Res. Methods Instrum. Comput. 35, 325-328.   DOI
10 Hauben, L., Vauterin, L., Moore, E.R., Hoste, B., and Swings, J. 1999. Genomic diversity of the genus Stenotrophomonas. Int. J. Syst. Bacteriol. 49, 1749-1760.   DOI   ScienceOn
11 Jarosz, L.S., Gradzki, Z., and Kalinowski, M. 2014. Trueperella pyogenes infections in swine: clinical course and pathology. Pol. J. Vet. Sci. 17, 395-404.
12 Kamada, N., Kim, Y.G., Sham, H.P., Vallance, B.A., Puente, J.L., Martens, E.C., and Nunez, G. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325-1329.   DOI
13 Lowenthal, J.W., Lambrecht, B., van den Berg, T.P., Andrew, M.E., Strom, A.D., and Bean, A.G. 2000. Avian cytokines - the natural approach to therapeutics. Dev. Comp. Immunol. 24, 355-365.   DOI
14 Konstantinov, S.R., Smidt, H., Akkermans, A.D.L., Casini, L., Trevisi, P., Mazzoni, M., De Filippi, S., Bosi, P., and de Vos, W.M. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66, 599-607.   DOI
15 Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120.   DOI
16 Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023.   DOI   ScienceOn
17 Oliver, W.T. and Wells, J.E. 2013. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J. Anim. Sci. 91, 3129-3136.   DOI
18 Pang, X., Hua, X., Yang, Q., Ding, D., Che, C., Cui, L., Jia, W., Bucheli, P., and Zhao, L. 2007. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 1, 156-162.   DOI
19 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596.   DOI
20 Santacruz, A., Collado, M.C., Garcia-Valdes, L., Segura, M.T., Martin-Lagos, J.A., Anjos, T., Marti-Romero, M., Lopez, R.M., Florido, J., Campoy, C., and Sanz, Y. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83-92.   DOI
21 Sarrabayrouse, G., Bossard, C., Chauvin, J.M., Jarry, A., Meurette, G., Quevrain, E., Bridonneau, C., Preisser, L., Asehnoune, K., Labarriere, N., and et al. 2014. CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 12, e1001833.   DOI
22 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., and et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.   DOI   ScienceOn
23 Thacker, P.A. 2013. Alternatives to antibiotics as growth promoters for use in swine production: a review. J. Anim. Sci. Biotechnol. 4, 35.   DOI
24 Tremaroli, V. and Backhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242-249.   DOI   ScienceOn
25 van der Velden, L.B., de Jong, A.S., de Jong, H., de Gier, R.P., and Rentenaar, R.J. 2012. First report of a Wautersiella falsenii isolated from the urine of an infant with pyelonephritis. Diagn. Microbiol. Infect. Dis. 74, 404-405.   DOI
26 Vaz-Moreira, I., Nobre, M.F., Nunes, O.C., and Manaia, C.M. 2007. Pseudosphingobacterium domesticum gen. nov., sp. nov., isolated from home-made compost. Int. J. Syst. Evol. Microbiol. 57, 1535- 1538.   DOI
27 Zhou, H.W., Li, D.F., Tam, N.F., Jiang, X.T., Zhang, H., Sheng, H.F., Qin, J., Liu, X., and Zou, F. 2011. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741-749.   DOI
28 Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614-620.   DOI