• Title/Summary/Keyword: bacterial microbiota

Search Result 157, Processing Time 0.029 seconds

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.

Effect of propolis supplementation and breed on growth performance, immunity, blood parameters and cecal microbiota in growing rabbits

  • Al-Homidan, Ibrahim;Fathi, Moataz;Abdelsalam, Magdy;Ebeid, Tarek;Abou-Emera, Osama;Mostafa, Mohamed;Abd El-Razik, Mohamed;Shehab-El-Deen, Mohamed
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1606-1615
    • /
    • 2022
  • Objective: The present study was conducted to investigate the potential effects of dietary supplemented propolis in two growing rabbit breeds on growth performance, immune response, blood parameters, carcass characteristics, and cecal microflora composition. Methods: A total of 90 growing rabbits aged 6 weeks from two breeds (V-line and Jabali) were randomly allocated to 3 dietary propolis experimental treatments. The experimental treatments consisted of a 2×3 factorial arrangement with two rabbit breeds and three levels of dietary propolis supplementation (0, 250 mg/kg, and 500 mg/kg). Each sub-treatment has 15 rabbits. The experimental period lasted six weeks. Results: There were no significant differences in growth performance and carcass characteristics due to propolis administration. Propolis supplementation at a high level significantly increased (linear; p<0.05) cellular-mediated immunity compared with the unsupplemented group. Furthermore, the rabbits receiving propolis exhibited a significant increase (linear and quadratic; p<0.03) in IgM immunoglobulins compared to the control. The current study provides further evidence that the dietary inclusion of propolis can significantly reduce pathogenic bacterial colonization in growing rabbits. The total count of microflora, E. coli, and Salmonella spp. was significantly lower (linear; p<0.01) in supplemented rabbit groups compared to the control group according to the microbiological analysis of cecal digesta. Based on breed effect, the results indicated that Jabali rabbits (local) performed better than V-line rabbits (foreign) in the majority of the studied traits. Conclusion: Dietary propolis is promising for further investigation into improving intestinal health and enhancing immunity in growing rabbits.

Qualitative and Quantitative Analysis for Microbiome Data Matching between Objects (마이크로바이옴 데이터 일치를 위한 물체들 사이의 정량 및 정성적 분석)

  • You, Hee Sang;Ok, Yeon Jeong;Lee, Song Hee;Lee, So Lip;Lee, Young Ju;Lee, Min Ho;Hyun, Sung Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.202-213
    • /
    • 2020
  • Although technological advances have allowed the efficient collection of large amounts of microbiome data for microbiological studies, proper analysis tools for such big data are still lacking. Additionally, analyses of microbial communities using poor databases can lead to misleading results. Hence, this study aimed to design an appropriate method for the analysis of big microbial databases. Bacteria were collected from the fingertips and personal belongings (mobile phones and laptop keyboards) of individuals. The genomic DNA was extracted from these bacteria and subjected to next-generation sequencing by targeting the 16S rRNA gene. The accuracy of the bacterial matching percentage between the fingertips and personal belongings was verified using a formula and an environment-related and human-related database. To design appropriate analysis, the bacterial matching accuracy was calculated based on the following three categories: comparison between qualitative and quantitative analysis, comparisons within same-gender participants as well as all participants regardless of gender, and comparison between the use of a human-related bacterial database (hDB) and environment-related bacterial database (eDB). The results showed that qualitative analysis, comparisons within same-gender participants, and the use of hDB provided relatively accurate results. This study provides an analytical method to obtain accurate results when conducting studies involving big microbiological data using human-derived microorganisms.

Bacterial Community Structure Shift Driven by Salinity: Analysis of DGGE Band Patterns from Freshwater to Seawater of Hyeongsan River, Korea (염도의 변화에 따른 미생물 군집의 변화: 경북 형산강 하류 미생물 군집 변화의 DGGE pattern 분석)

  • Beck, Bo Ram;Holzapfel, Wilhelm;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.406-414
    • /
    • 2013
  • The influence of a gradual increase in salinity on the diversity of aquatic bacterial in rivers was demonstrated. The denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community shift downstream in the Hyeongsan River until it joins the open ocean. Four water samples were taken from the river showing the salinity gradients of 0.02%, 1.48%, 2.63%, and 3.62%. The samples were collected from four arbitrary stations in 2.91 km intervals on average, and a DGGE analysis was performed. Based on the results of this analysis, phylogenetic similarity identification, tree analysis, and a comparison of each station were performed. The results strongly suggested that the response of the bacterial community response was concomitant to gradual changes in salinity, which implies that salt concentration is a major factor in shifting the microbiota in aquatic habitats. The results also imply a huge diversity in a relatively small area upstream from the river mouth, compared to that in open oceans or coastal regions. Therefore, areas downstream towards a river mouth or delta are could be good starting points in the search for new bacterial species and strains ("biotypes").

Status and Prospect of Lactic Acid Bacteria with Antibiotic Resistance (항생제 내성을 가진 유산균의 현황과 전망)

  • Chon, Jung-Whan;Seo, Kun-Ho;Bae, Dongryeoul;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.70-88
    • /
    • 2020
  • Lactic acid bacteria (LAB) form an essential part of the intestinal microbiota of the human body and possess the ability to stabilize the intestinal microbiota, strengthen immunity, and promote digestion as well as intestinal synthesis of vitamins, amino acids, and proteins. Hence, LAB are currently widely used in various products. However, due to the indiscriminate overuse of antibiotics in humans and livestock, bacterial resistance to antibiotics has been increasing rapidly, which has led to serious problems in the treatment of bacterial infections. Additionally, several reports have revealed that antibiotic-resistant LAB may infect people whose immune systems are not fully developed or whose immune systems are temporarily weakened. Therefore, it is imperative to consider the possibility of antibiotic-resistant LAB causing diseases in humans and animals, investigate the mechanism of action between antibiotics and LAB, and determine the relevant regulations for the safe use of LAB.

Comparative analysis of the microbial communities in raw milk produced in different regions of Korea

  • Kim, In Seon;Hur, Yoo Kyung;Kim, Eun Ji;Ahn, Young-Tae;Kim, Jong Geun;Choi, Yun-Jaie;Huh, Chul Sung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1643-1650
    • /
    • 2017
  • Objective: The control of psychrotrophic bacteria causing milk spoilage and illness due to toxic compounds is an important issue in the dairy industry. In South Korea, Gangwon-do province is one of the coldest terrains in which eighty percent of the area is mountainous regions, and mainly plays an important role in the agriculture and dairy industries. The purposes of this study were to analyze the indigenous microbiota of raw milk in Gangwon-do and accurately investigate a putative microbial group causing deterioration in milk quality. Methods: We collected raw milk from the bulk tank of 18 dairy farms in the Hoengseong and Pyeongchang regions of Gangwon-do. Milk components were analyzed and the number of viable bacteria was confirmed. The V3 and V4 regions of 16S rRNA gene were amplified and sequenced on an Illumina Miseq platform. Sequences were then assigned to operational taxonomic units, followed by the selection of representative sequences using the QIIME software package. Results: The milk samples from Pyeongchang were higher in fat, protein, lactose, total solid, and solid non-fat, and bacterial cell counts were observed only for the Hoengseong samples. The phylum Proteobacteria was detected most frequently in both the Hoengseong and Pyeongchang samples, followed by the phyla Firmicutes and Actinobacteria. Notably, Corynebacterium, Pediococcus, Macrococcus, and Acinetobacter were significantly different from two regions. Conclusion: Although the predominant phylum in raw milk is same, the abundances of major genera in milk samples were different between Hoengseong and Pyeongchang. We assumed that these differences are caused by regional dissimilar farming environments such as soil, forage, and dairy farming equipment so that the quality of milk raw milk from Pyeongchang is higher than that of Hoengseong. These results could provide the crucial information for identifying the microbiota in raw milk of South Korea.

Impact of different shades of light-emitting diode on fecal microbiota and gut health in broiler chickens

  • Ianni, Andrea;Bennato, Francesca;Di Gianvittorio, Veronica;Di Domenico, Marco;Martino, Camillo;Colapietro, Martina;Camma, Cesare;Martino, Giuseppe
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1967-1976
    • /
    • 2022
  • Objective: The aim of this study was to characterize the fecal microbiota of broiler chickens reared in the presence of different shades of light-emitting diode (LED) lights, correlating this information with biochemical and molecular evidence that allowed drawing conclusions on the state of health of the animals. Methods: Overall, the metagenomic approach on fecal samples was associated with evaluations on enzymes involved in the cellular response to oxidative stress: glutathione peroxidase (GPX), superoxide dismutase and catalase; while the inflammatory aspect was studied through the dosage of a proinflammatory cytokine, the interleukin 6 (IL-6), and the evaluation of the matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9). Specifically, analysis was performed on distinct groups of chickens respectively raised in the presence of neutral (K = 3,300 to 3,700), cool (K = 5,500 to 6,000), and warm (K = 3,000 to 2,500) LED lightings, and a direct comparison was performed with animals reared with traditional neon lights. Results: The metagenomic analysis highlighted the presence of two most abundant bacterial phyla, the Firmicutes and the Bacteroidetes, with the latter characterized by a greater relative abundance (p<0.05) in the group of animals reared with Neutral LED light. The analysis on the enzymes involved in the antioxidant response showed an effect of the LED light, regardless of the applied shade, of reducing the expression of GPX (p<0.01), although this parameter is not correlated to an effective reduction in the tissue amount of the enzyme. Regarding the inflammatory state, no differences associated with IL-6 and MMP-9 were found; however, is noteworthy the significant reduction of MMP-2 activity in tissue samples obtained from animals subjected to illumination with neutral LED light. Conclusion: This evidence, combined with the metagenomic findings, supports a potential positive effect of neutral LED lighting on animal welfare, although these considerations must be reflected in more targeted biochemical evaluations.

Shrub coverage alters the rumen bacterial community of yaks (Bos grunniens) grazing in alpine meadows

  • Yang, Chuntao;Tsedan, Guru;Liu, Yang;Hou, Fujiang
    • Journal of Animal Science and Technology
    • /
    • v.62 no.4
    • /
    • pp.504-520
    • /
    • 2020
  • Proliferation of shrubs at the expense of native forage in pastures has been associated with large changes in dry-matter intake and dietary components for grazing ruminants. These changes can also affect the animals' physiology and metabolism. However, little information is available concerning the effect of pastoral-shrub grazing on the rumen bacterial community. To explore rumen bacteria composition in grazing yaks and the response of rumen bacteria to increasing shrub coverage in alpine meadows, 48 yak steers were randomly assigned to four pastures with shrub coverage of 0%, 5.4%, 11.3%, and 20.1% (referred as control, low, middle, and high, respectively), and ruminal fluid was collected from four yaks from each pasture group after 85 days. Rumen fermentation products were measured and microbiota composition determined using Ion S5™ XL sequencing of the 16S rRNA gene. Principal coordinates analysis (PCoA) and similarity analysis indicated that the degree of shrub coverage correlated with altered rumen bacterial composition of yaks grazing in alpine shrub meadows. At the phyla level, the relative abundance of Firmicutes in rumen increased with increasing shrub coverage, whereas the proportions of Bacteroidetes, Cyanobacteria and Verrucomicrobia decreased. Yaks grazing in the high shrub-coverage pasture had decreased species of the genus Prevotellaceae UCG-001, Lachnospiraceae XPB1014 group, Lachnospiraceae AC2044 group, Lachnospiraceae FCS020 group and Fretibacterium, but increased species of Christensenellaceae R-7 group, Ruminococcaceae NK4A214 group, Ruminococcus 1, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005 and Lachnospiraceae UCG-008. These variations can enhance the animals' utilization efficiencies of cellulose and hemicellulose from native forage. Meanwhile, yaks grazed in the high shrub-coverage pasture had increased concentrations of ammonia nitrogen (NH3-N) and branched-chain volatile fatty acids (isobutyrate and isovalerate) in rumen compared with yaks grazing in the pasture without shrubs. These results indicate that yaks grazing in a high shrub-coverage pasture may have improved dietary energy utilization and enhanced resistance to cold stress during the winter. Our findings provide evidence for the influence of shrub coverage on the rumen bacterial community of yaks grazing in alpine meadows as well as insights into the sustainable production of grazing yaks on lands with increasing shrub coverage on the Qinghai-Tibet Plateau.

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping;Meng, Qingxiang;Ren, Liping;Liu, Wei;Zhang, Xinzhuang;Huo, Yunlong;Zhou, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1433-1441
    • /
    • 2015
  • This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.

Effects of liposomal-curcumin on five opportunistic bacterial strains found in the equine hindgut - preliminary study

  • Bland, S.D.;Venable, E.B.;McPherson, J.L.;Atkinson, R.L.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.15.1-15.5
    • /
    • 2017
  • Background: The horse intestinal tract is sensitive and contains a highly complex microbial population. A shift in the microbial population can lead to various issues such as inflammation and colic. The use of nutraceuticals in the equine industry is on the rise and curcumin is thought to possess antimicrobial properties that may help to minimize the proliferation of opportunistic bacteria. Methods: Four cecally-cannulated horses were utilized to determine the optimal dose of liposomal-curcumin (LIPC) on reducing Streptococcus bovis/equinus complex (SBEC), Escherichia coli K-12, Escherichia coli general, Clostridium difficile, and Clostridium perfringens in the equine hindgut without adversely affecting cecal characteristics. In the first study cecal fluid was collected from each horse and composited for an in vitro, 24 h batch culture to examine LIPC at four different dosages (15, 20, 25, and 30 g) in a completely randomized design. A subsequent in vivo $4{\times}4$ Latin square design study was conducted to evaluate no LIPC (control, CON) or LIPC dosed at 15, 25, and 35 g per day (dosages determined from in vitro results) for 9 days on the efficacy of LIPC on selected bacterial strains, pH, and volatile fatty acids. Each period was 14 days with 9 d for acclimation and 5 d withdrawal period. Results: In the in vitro study dosage had no effect ($P{\geq}0.42$) on Clostridium strains, but as the dose increased SBEC concentrations increased (P = 0.001). Concentrations of the E. coli strain varied with dose. In vivo, LIPC's antimicrobial properties, at 15 g, significantly decreased (P = 0.02) SBEC when compared to 25 and 35 g dosages. C. perfringens decreased linearly (P = 0.03) as LIPC dose increased. Butyrate decreased linearly (P = 0.01) as LIPC dose increased. Conclusion: Further studies should be conducted with a longer dosing period to examine the antimicrobial properties of curcumin without adversely affecting cecal characteristics.