Browse > Article
http://dx.doi.org/10.1186/s40781-017-0138-4

Effects of liposomal-curcumin on five opportunistic bacterial strains found in the equine hindgut - preliminary study  

Bland, S.D. (Department of Animal Science, Food & Nutrition, Southern Illinois University)
Venable, E.B. (Department of Animal Science, Food & Nutrition, Southern Illinois University)
McPherson, J.L. (Department of Animal Science, Food & Nutrition, Southern Illinois University)
Atkinson, R.L. (Department of Animal Science, Food & Nutrition, Southern Illinois University)
Publication Information
Journal of Animal Science and Technology / v.59, no.6, 2017 , pp. 15.1-15.5 More about this Journal
Abstract
Background: The horse intestinal tract is sensitive and contains a highly complex microbial population. A shift in the microbial population can lead to various issues such as inflammation and colic. The use of nutraceuticals in the equine industry is on the rise and curcumin is thought to possess antimicrobial properties that may help to minimize the proliferation of opportunistic bacteria. Methods: Four cecally-cannulated horses were utilized to determine the optimal dose of liposomal-curcumin (LIPC) on reducing Streptococcus bovis/equinus complex (SBEC), Escherichia coli K-12, Escherichia coli general, Clostridium difficile, and Clostridium perfringens in the equine hindgut without adversely affecting cecal characteristics. In the first study cecal fluid was collected from each horse and composited for an in vitro, 24 h batch culture to examine LIPC at four different dosages (15, 20, 25, and 30 g) in a completely randomized design. A subsequent in vivo $4{\times}4$ Latin square design study was conducted to evaluate no LIPC (control, CON) or LIPC dosed at 15, 25, and 35 g per day (dosages determined from in vitro results) for 9 days on the efficacy of LIPC on selected bacterial strains, pH, and volatile fatty acids. Each period was 14 days with 9 d for acclimation and 5 d withdrawal period. Results: In the in vitro study dosage had no effect ($P{\geq}0.42$) on Clostridium strains, but as the dose increased SBEC concentrations increased (P = 0.001). Concentrations of the E. coli strain varied with dose. In vivo, LIPC's antimicrobial properties, at 15 g, significantly decreased (P = 0.02) SBEC when compared to 25 and 35 g dosages. C. perfringens decreased linearly (P = 0.03) as LIPC dose increased. Butyrate decreased linearly (P = 0.01) as LIPC dose increased. Conclusion: Further studies should be conducted with a longer dosing period to examine the antimicrobial properties of curcumin without adversely affecting cecal characteristics.
Keywords
Clostridium; Escherichia coli; Equine; Microbiota; Nutraceutical; Streptococcus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bailey SR, Baillon ML, Rycroft AN, Harris PA, Elliott J. Identification of equine cecal bacteria producing amines in an in vitro model of carbohydrate overload. Appl Environ Microbiol. 2003;69:2087-93. doi:10.1128/AEM.69.4.20872093.2003.   DOI
2 Lee C, Lee S, Shin S, Hwang S. Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotech. 2008;78:371-6. doi:10.1007/s00253-007-1300-6.   DOI
3 Avbersek J, Cotman M, Ocepek M. Detection of Clostridium difficile in animals: comparison of real-time PCR assays with the culture method. J Med Microbiol. 2009;60:1119-25. doi:10.1099/jmm.0.030304-0.
4 Karpowicz E, Novinscak A, Bärlocher F, Filion M. qPCR quantification and genetic characterization of Clostridium perfringens populations in biosolids composted for 2 years. J Appl Microbiol. 2009;108:571-81. doi:10.1111/j.1365-2672.2009.04441.x.
5 Hastie PM, Mitchell K, Murray JMD. Semi-quantitative analysis of Ruminococcus flavefaciens, Fibrobacter succinogenes and Streptococcus bovis in the equine large intestine using real-time polymerase chain reaction. Brit J Nutr. 2008;100:561-8. doi:10.1017/s0007114508968227.   DOI
6 Magdesian KG, Leutenegger CM. Real-time PCR and typing of Clostridium difficile isolates colonizing mare-foal. Vet J. 2011;190:119-23.   DOI
7 Weese JS, Anderson MEC, Lowe A, Monteith GJ. Preliminary investigation of the probiotic potential of lactobacillus rhammosus strain GG in horses: fecal recovery following oral administration and safety. Can Vet J. 2003;44(4):299-302.
8 Broderick GA, Kang JH. Automated simultaneous determinations of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci. 1980;63:64-75.   DOI
9 Goetsch AL, Galyean ML. Influence of feeding frequency on passage of fluid and particulate markers in steers fed a concentrate diet. Can J Anim Sci. 1983;63:727-30. doi:10.4141/cjas83-084.   DOI
10 Robson DS. A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Int Bio Soc. 1959;15:187-91. doi:10.2307/2527668.
11 Willard JG, Willard JC, Wolfram SA, Baker JP. Effects of diet on cecal pH and feeding behavior of horses. J Anim Sci. 1997;45:87-93. doi:10.2134/jas1977.45187x.
12 Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567-90.   DOI
13 Marshell JF, Blikslager AT. The effects of nonsteroidal anti-inflammatory drugs on the equine intestine. Eq Vet J. 2011;43:140-4. doi:10.1111/j.2042-3306.2011.00398.x.   DOI
14 Gustafson A. Antibiotic associated diarrhea in horses with special reference to Clostridium difficile. Diss. Swedish Univ Agr Sci. 2004;166.http://pub.epsilon.slu.se/440/1/AGfin_kappa.pdf. (Accessed 20 Jan 2016).
15 Costa MC, Arroyo LG, Allen-Vercoe E, Stampflii HR, Kim PT, Sturgeon A, et al. Comparison of fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16s rrna gene. PLoS One. 2012;7:e41484.   DOI
16 Julliand V, Grimm P. The microbiome of the horse hindgut: history and current knowledge. J Anim Sci. 2016;64 doi:10.2527/jas2015-0198.
17 Mackie RI, Wilkins CA. Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Appl Environ Microbiol. 1988;54:2155-60.
18 Milinovich GJ, Klieve AV, Pollitt CC, Trott DJ. Microbial events in the hindgut during carbohydrate-induced equine laminitis. Vet Clin Eq. 2010;26:79-94.   DOI
19 Van Hoogmoed LM, Synder JR, Nieto J, Harmon FA. In vitro evaluation of a customized solution for use in attenuating effects of ischemia and reperfusion in the small intestine of horses. Am J Vet Res. 2002;63:1389-94.   DOI
20 Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci. 2011; doi:10.1073/pnas.1016217108.
21 Lawhavinit QA, Kongkathip N, Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart J Nat Sci. 2010;44:364-71.
22 Farinacci M, Gaspardo B, Colitti M, Stefanon B. Dietary administration of curcumin modifies transcriptional profile of genes involved in inflammatory cascade in horse leukocytes. Ital J Anim Sci. 2009;8:84-6. doi:10.4081/ijas.2009.s2.84.   DOI
23 Ukil AL, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Brit J Pharmacol. 2003;139:209-18. doi:10.1038/sj.bjp.0705241.   DOI
24 Beard WL, Slough TL, Gunkel CD. Technical note: a 2-stage cecal cannulation technique in standing horses. J Anim Sci. 2011;89:2425-9.   DOI
25 Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption, and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46:2-18. doi:10.4143/crt.2014.46.1.2.   DOI