Browse > Article
http://dx.doi.org/10.5713/ajas.15.0091

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance  

Zhao, Liping (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Meng, Qingxiang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Ren, Liping (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Liu, Wei (Beijing Computing Center)
Zhang, Xinzhuang (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Huo, Yunlong (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Zhou, Zhenming (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.10, 2015 , pp. 1433-1441 More about this Journal
Abstract
This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.
Keywords
Nitrate; Rumen Fermentation; Bacterial Community; Ion Torrent Sequencing; Quantitative Polymerase Chain Reaction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Environ.Biotech.75:165-174.   DOI
2 Thoetkiattikul, H., W. Mhuantong, T. Laothanachareon, S. Tangphatsornruang, V. Pattarajinda, L. Eurwilaichitr, and V. Champreda. 2013. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr. Microbiol. 67:130-137.   DOI   ScienceOn
3 Van Zijderveld, S. M., W. J. J. Gerrits, J. A. Apajalahti, J. R. Newbold, J. Dijkstra, R. A. Leng, and H. B. Perdok. 2010. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93:5856-5866.   DOI   ScienceOn
4 Weakley, D. G. and F. N. Owens. 1983. Influence of ammonia concentration on microbial protein synthesis in the rumen. Oklahoma Agr. Exp. Sta. MP-114, 39.
5 Zened, A., S. Combes, L. Cauquil, J. Mariette, C. Klopp, O. Bouchez, M. A. Troegeler, and F. Enjalbert. 2013. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 83:504-514.   DOI   ScienceOn
6 Zhou, Z., Q. Meng, and Z. Yu. 2011. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl. Environ. Microbiol. 77:2634-2639.   DOI   ScienceOn
7 Zhou, Z., Z. Yu, andQ. Meng. 2012. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour. Technol.103:173-179.   DOI   ScienceOn
8 Andries, J. I., F. X. Buysse, D. L. Debrabander, and B. G.Cottyn. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances -A review. Anim. Feed Sci. Technol. 18:169-180.   DOI   ScienceOn
9 Ballard, F. J. 1972. Supply and utilization of acetate in mammals. Am. J. Clin. Nutr. 25:773-779.   DOI
10 Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75.   DOI
11 Bru, D., A. Sarr,and L. Philippot. 2007. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl. Environ. Microbiol. 73:5971-5974.   DOI   ScienceOn
12 Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, and J. I. Gordon et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335-336.   DOI   ScienceOn
13 Dai, J. F., Q. X. Meng, and Z. M. Zhou. 2009. Effect of nitrate addition level on in vitro ruminal fermentation characteristics and microbial efficiency. Scientia AgricSinica. 43:3418-3424.
14 Flores, E., J. E. Frias, L. M. Rubio, and A. Herrero. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosyn. Res. 83:117-133.   DOI
15 Denman, S. E. and C. S. McSweeney. 2006. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58:572-582.   DOI   ScienceOn
16 Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci. 44:1768-1771.   DOI
17 Evans, N. J., J. M. Brown, R. D. Murray, B. Getty, R. J. Birtles, C. A. Hart, and S. D. Carter. 2011. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 77:138-177.   DOI   ScienceOn
18 Group Jumpstart Consortium Human Microbiome Project Data Generation Working Group. 2012. Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE. 7(6):e39315.   DOI
19 Guo, W. S., D. M. Schaefer, X. X. Guo, L. P. Ren, and Q. X.Meng. 2009. Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. AsianAustralas. J. Anim. Sci. 22: 542-549.   DOI
20 Hulshof, R., A. Berndt, W. Gerrits, J. Dijkstra, S. M. van Zijderveld, J. R. Newbold, and H. B. Perdok. 2012. Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci. 90:2317-2323.   DOI
21 Isaacson, R. and H. B. Kim. 2012. The intestinal microbiome of the pig. Anim. Health Res. Rev. 13:100-109.   DOI   ScienceOn
22 Lin, M., W. Guo, Q. Meng, D. M. Stevenson, P. J. Weimer, and D. M. Schaefer. 2013. Changes in rumen bacterial community composition in steers in response to dietary nitrate. Appl. Environ.Biotech. 97:8719-8727.   DOI   ScienceOn
23 Lee, H. J., J. Y. Jung, Y. K. Oh, S. Lee, E. L. Madsen, and C. O. Jeon. 2012. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 78: 5983-5993.   DOI   ScienceOn
24 Lewis, D. 1951. The metabolism of nitrate and nitrite in the sheep. 1. The reduction of nitrate in the rumen of the sheep. Biochem J. 48:175-180.   DOI
25 Lin, M., D. M. Schaefer, W. S. Guo, L. P. Ren,and Q. X. Meng. 2011. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian Australas. J. Anim. Sci. 24:471-478.   DOI   ScienceOn
26 Marais, J. P., J. J. Therion, R. I. Mackie, A. Kistner, and C. Dennison. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbialpopulation. Br. J. Nutr. 59: 301-313.   DOI   ScienceOn
27 Miller, W. G., G. Wang, T. T. Binnewies, and C. T. Parker. 2008. The complete genome sequence and analysis of the human pathogen Campylobacter lari. Foodborne Pathog. Dis. 5:371-386.   DOI   ScienceOn
28 Palmer, K. andM. A. Horn. 2012. Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N2O-metabolizing palsa peat. Appl. Environ. Microbiol. 78:5584-5596.   DOI
29 Patel, R. K. and M. Jain. 2012. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE, 7(2):e30619.   DOI
30 Parkhill, J., B. W. Wren, K. Mungall,J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, and S. Holroyd et al. 2000. The genome sequence of the food-borne pathogen Campylobacter jejunireveals hypervariable sequences. Nature 403(6770):665-668.   DOI   ScienceOn
31 Pitta, D. W., W. E. Pinchak, S. E. Dowd, J. Osterstock, V. Gontcharova, E. Youn, K. Dorton, I. Yoon, B. R. Min, J. D. Fulford, T. A. Wickersham, and D. P. Malinowski. 2010. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb.Ecol. 59:511-522.   DOI
32 Price, M. N., P. S. Dehal, and A. P. Arkin. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26:1641-1650.   DOI   ScienceOn
33 Prasanna, R., V. Kumar, S. Kumar, A. Kumar Yadav, U. Tripathi, A. Kumar Singh, M. C. Jain, P. Gupta, P. K. Singh, and N. Sethunathan. 2002. Methane production in rice soil is inhibited by cyanobacteria. Microbiol.Res. 157:1-6.   DOI   ScienceOn
34 Sar, C., B. Mwenya, B. Santoso, K. Takaura, R. Morikawa, N. Isogai, Y. Asakura, Y. Toride, and J. Takahashi. 2005. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J. Anim. Sci. 83:644-652.   DOI
35 Slyter, L. L. and P. A. Putnam. 1967. In vivo vs in vitro continuous culture of ruminal microbial populations.J. Anim. Sci. 26: 1421-1427.   DOI
36 Stewart, C. S., H. J. Flint, and M. P. Bryant. 1997. The rumen bacteria. In:The Rumen Microbial Ecosystem, 2nd ed.,By (P. N. Hobson, and C. S. Stewart). Blackie Academic and Professional, London, UK. 10-72.