• Title/Summary/Keyword: bacterial fermentation

Search Result 552, Processing Time 0.035 seconds

Mass Spectrometry-Based Metabolite Profiling and Bacterial Diversity Characterization of Korean Traditional Meju During Fermentation

  • Lee, Su Yun;Kim, Hyang Yeon;Lee, Sarah;Lee, Jung Min;Muthaiya, Maria John;Kim, Beom Seok;Oh, Ji Young;Song, Chi Kwang;Jeon, Eun Jung;Ryu, Hyung Seok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1523-1531
    • /
    • 2012
  • The metabolite profile of meju during fermentation was analyzed using mass spectrometry techniques, including GC-MS and LC-MS, and the bacterial diversity was characterized. The relative proportions of bacterial strains indicated that lactic acid bacteria, such as Enterococcus faecium and Leuconostoc lactis, were the dominant species. In partial least-squares discriminate analysis (PLS-DA), the componential changes, which depended on fermentation, proceeded gradually in both the GC-MS and LC-MS data sets. During fermentation, lactic acid, amino acids, monosaccharides, sugar alcohols, and isoflavonoid aglycones (daidzein and genistein) increased, whereas citric acid, glucosides, and disaccharides decreased. MS-based metabolite profiling and bacterial diversity characterization of meju demonstrated the changes in metabolites according to the fermentation period and provided a better understanding of the correlation between metabolites and bacterial diversity.

Effects of Bacterial Fraction and Proportion of Silage and Concentrate on Rumen Fermentation and Gas Production Profile

  • Lee, Sang S.;Chang, M.B.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.643-647
    • /
    • 2004
  • An in vitro experiment was carried out to investigate effects of solid associated (SAB) and liquid associated bacteria (LAB) and the type of incubation substrate on ruminal fermentation and gas production profiles. Bacterial fraction did not influence total numbers of bacteria. Gas production degradation parameters were significantly influenced by bacterial fraction and type of substrate (p<0.05). There was significant interaction between bacterial fraction and type of substrate in gas production (p<0.01). Total VFA concentration and acetic and propionic acid ratio were also influenced by bacterial fraction and type of substrate with little differences in individual VFA concentration.

Production of Bacterial Cellulose Using Waste of Beer Fermentation Broth (맥주발효 폐액을 이용한 미생물 셀룰로오스 생산)

  • Park, Joog Kon;Hyun, Seung Hoon;Ahn, Won Sool
    • Korean Chemical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • Bacterial cellulose (BC) was produced by Gluconacetobacter hansenii PJK (KCTC 10505 BP) strains using the waste of beer fermentation broth. It contained more C and N than a basal medium with a small amount of S and more than 4% ethanol. The amount of BC produced in a shaking culture using the waste of beer fermentation broth was nearly the same as that of a basal medium. The production of BC decreased in a shear stress field in a jar fermenter although the conversion of cellulose producing ($Cel^+$) cells to non-cellulose producing ($Cel^-$) mutants was not severe. This study showed that the waste of beer fermentation broth is an inexpensive carbon, nitrogen source with ethanol and thus a worthy substitute for the conventional medium for BC production.

Effect of Nitrogen-Load Condition on Hydrogen Production and Bacterial Community in Continuous Anaerobic Hydrogen Fermentation Process

  • Kawagoshi, Yasunori;Nakao, Masaharu;Hino, Naoe;Iwasa, Tomonori;Furukawa, Kenji
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.123-131
    • /
    • 2007
  • Effect of nitrogen-load condition on hydrogen ($H_2$) production and bacterial community in a continuous anaerobic hydrogen fermentation were investigated. The slight $H_2$ production on extremely low nitrogen-load condition (C/N ratio: 180) at the start-up period. The highest $H_2$ production was obtained when the C/N ratio was 36, the $H_2$ production yield ($mol-H_2/mol-glucose$) reached to 1.7, and it was indicated that Clostridium pasteurianum mainly contributed to the $H_2$ production. The $H_2$ production was decreased on both the lower (C/N: 72) and higher (C/N: 18) nitrogen-load conditions. The excess nitrogen-load was not always suitable for the hydrogen production. The fluctuation of $H_2$ production seemed to be caused by a change in the bacterial community according to the nitrogen-load condition, while a recovery of $H_2$ productivity was possible by a control of nitrogen-load condition through the bacterial community change. When the nitrogen-load condition was not suitable for hydrogen production, the lactic acid concentration was increased and also lactic acid bacteria were definitely detected, which suggested that the competition between hydrogen fermentator and lactic acid producer was occurred. These results demonstrated that the nitrogen-load condition affect on the $H_2$ productivity through the change of bacterial community in anaerobic hydrogen fermentation.

  • PDF

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

The Correlation of Physicochemical Quality Index and Sensory Index of Kakdugi (깍두기의 이화학적 품질 지표와 관능적 지표간의 상관관계)

  • Park, So-Hee;Lim, Ho-Soo
    • Culinary science and hospitality research
    • /
    • v.14 no.3
    • /
    • pp.136-142
    • /
    • 2008
  • This study was conducted to investigate the correlation of the physicochemical quality index(pH, acidity, reducing sugar content and lactic acid bacterial count) and sensory index(sourness) of Kakdugi during the fermentation at 5$^{\circ}C$, 10$^{\circ}C$ and 20$^{\circ}C$ respectively. Also, the relations between physicochemical quality index and overall acceptability were carried out. The pH range, based on the middle sour intensity point of 4.5, was 5.75 at 5$^{\circ}C$ fermentation, whereas that was 4.2 at 10$^{\circ}C$ and 20$^{\circ}C$ fermentation. The pH showing the highest overall acceptability decreased along with increased fermentation temperature. The reduced sugar content decreased rapidly up to 0.9% acidity, but after that, decreased slowly from more than 0.9% acidity at all fermentation temperatures. With increased fermentation temperature, the reduced sugar content showing the highest overall acceptability also showed the decreasing tendency. Change patterns of lactic acid bacterial count and sourness didn't coincided at 5$^{\circ}C$ fermentation, whereas those did at 10$^{\circ}C$ and 20$^{\circ}C$ fermentation. The indexes showing high significant correlations with sourness of Kakdugi fermented at 5$^{\circ}C$ were not pH and lactic acid bacterial count but acidity and reducing sugar content(p<0.05). The sourness of Kakdugi fermented at 10$^{\circ}C$ and 20$^{\circ}C$ showed high significant correlations with all of the physicochemical index(p<0.05).

  • PDF

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Bacterial Community Migration in the Ripening of Doenjang, a Traditional Korean Fermented Soybean Food

  • Jeong, Do-Won;Kim, Hye-Rim;Jung, Gwangsick;Han, Seulhwa;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.648-660
    • /
    • 2014
  • Doenjang, a traditional Korean fermented soybean paste, is made by mixing and ripening meju with high salt brine (approximately 18%). Meju is a naturally fermented soybean block prepared by soaking, steaming, and molding soybean. To understand living bacterial community migration and the roles of bacteria in the manufacturing process of doenjang, the diversity of culturable bacteria in meju and doenjang was examined using media supplemented with NaCl, and some physiological activities of predominant isolates were determined. Bacilli were the major bacteria involved throughout the entire manufacturing process from meju to doenjang; some of these bacteria might be present as spores during the doenjang ripening process. Bacillus siamensis was the most populous species of the genus, and Bacillus licheniformis exhibited sufficient salt tolerance to maintain its growth during doenjang ripening. Enterococcus faecalis and Enterococcus faecium, the major lactic acid bacteria (LAB) identified in this study, did not continue to grow under high NaCl conditions in doenjang. Enterococci and certain species of coagulase-negative staphylococci (CNS) were the predominant acid-producing bacteria in meju fermentation, whereas Tetragenococcus halophilus and CNS were the major acid-producing bacteria in doenjang fermentation. We conclude that bacilli, LAB, and CNS may be the major bacterial groups involved in meju fermentation and that these bacterial communities undergo a shift toward salt-tolerant bacilli, CNS, and T. halophilus during the doenjang fermentation process.

Changes in Physicochemical and Sensory Properties of Hizikia fusiforme Water Extract by Fermentation of Lactic Acid Bacteria (유산균 발효에 의한 톳(Hizikia fusiforme) 추출액의 이화학적 및 관능적 특성 변화)

  • Song, Ho-Su;Kim, Hong-Kil;Min, Hye-Ok;Choi, Jong-Duck;Kim, Young-Mog
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.2
    • /
    • pp.104-110
    • /
    • 2011
  • This study was conducted to improve the food functional and sensory food quality of Hizikia fusiforme by the fermentation of lactic acid bacteria. Seven strains of lactic acid bacteria isolated from traditional Korean fermented food were inoculated and cultivated in H. fusiforme water extract. Among them, Lactobacillus brevis LB-20, isolated from Kimchi, was selected for further study by considering the results of bacterial growth, DPPH radical scavenging activity, and sensory evaluation. No significant differences in proximate compositions (moisture, crude protein, crude fat, and crude ash) were observed by the fermentation of L. brevis LB-20. The most dramatical change was the conversion from glutamate to ${\gamma}$-aminobutyric acid (GABA) in H. fusiforme water extract fermented by L. brevis LB-20. The GABA content increased approximately 60-fold after 48 hr of fermentation. The bacterial fermentation also resulted in low-molecularization of the extract. The particle size of the fermented extract became approximately 4-fold smaller than that of the law extract. In addition, the analysis of volatile flavor compounds using GC/MS revealed that the bacterial fermentation dramatically removed off-flavors such as acetaldehyde, haxanal, diallyl disulphide and 1-penten-2-ol in the H. fusiforme extract.

Effect of Lactate and Corn Steep Liquor on the Production of Bacterial Cellulose by Gluconacetobacter persimmonis $KJ145^T$

  • Jang, Se-Young;Jeong, Yong-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.561-565
    • /
    • 2005
  • In this study, we attempted to assess the effects of lactate and com steep liquor (CSL) on the production of bacterial cellulose (BC) by Gluconacetobacter persimmonis $KJ145^T$. The optimal condition for the production of BC was a lactate concentration of 1% (w/v) and a CSL concentration of 10% (w/v). Under these optimal conditions, 6 days of fermentation produced 6.90 g/L of BC. Both the BC production yield and cell growth increased continuously until the 20th day of fermentation, by which time 17.0 g/L had been produced. In a static culture trial, in which plastic containers were used as fermentation chambers for 6 days of fermentation, the BC production yield in the group initially cultured with 500 mL medium was higher than that of the 750 and 1000 mL media. In addition, the texture of the BC was examined according to its post-treatment in order to determine conditions for optimal textural characteristics. The strength, hardness, and other characteristics of the BC were negatively correlated with sucrose concentration, but were largely positively correlated with NaCl concentration. With regards to the effect of pH on textural change, BC strength and hardness were elevated at pH 2 and 8 but reduced at pH 4 and 6, indicating that the texture of the BC is extremely sensitive to treatment conditions.