Browse > Article
http://dx.doi.org/10.4014/jmb.1207.07003

Mass Spectrometry-Based Metabolite Profiling and Bacterial Diversity Characterization of Korean Traditional Meju During Fermentation  

Lee, Su Yun (Departments of Bioscience and Biotechnology, KonKuk University)
Kim, Hyang Yeon (Departments of Bioscience and Biotechnology, KonKuk University)
Lee, Sarah (Departments of Bioscience and Biotechnology, KonKuk University)
Lee, Jung Min (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Muthaiya, Maria John (Departments of Bioscience and Biotechnology, KonKuk University)
Kim, Beom Seok (Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Oh, Ji Young (Food Research Institute, CJ CheilJedang Corporation)
Song, Chi Kwang (Food Research Institute, CJ CheilJedang Corporation)
Jeon, Eun Jung (Food Research Institute, CJ CheilJedang Corporation)
Ryu, Hyung Seok (Food Research Institute, CJ CheilJedang Corporation)
Lee, Choong Hwan (Departments of Bioscience and Biotechnology, KonKuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.11, 2012 , pp. 1523-1531 More about this Journal
Abstract
The metabolite profile of meju during fermentation was analyzed using mass spectrometry techniques, including GC-MS and LC-MS, and the bacterial diversity was characterized. The relative proportions of bacterial strains indicated that lactic acid bacteria, such as Enterococcus faecium and Leuconostoc lactis, were the dominant species. In partial least-squares discriminate analysis (PLS-DA), the componential changes, which depended on fermentation, proceeded gradually in both the GC-MS and LC-MS data sets. During fermentation, lactic acid, amino acids, monosaccharides, sugar alcohols, and isoflavonoid aglycones (daidzein and genistein) increased, whereas citric acid, glucosides, and disaccharides decreased. MS-based metabolite profiling and bacterial diversity characterization of meju demonstrated the changes in metabolites according to the fermentation period and provided a better understanding of the correlation between metabolites and bacterial diversity.
Keywords
Meju; isoflavones; liquid chromatography-mass spectrometry (LC-MS); gas chromatography-mass spectrometry(GC-MS);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Shin, Z. I., R. Yu, S. A. Park, D. K. Chung, C. W. Ahn, H. S. Nam, et al. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. Agric. Food Chem. 49: 3004-3009.   DOI   ScienceOn
2 Solms, J. 1969. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17: 686-688.   DOI
3 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
4 Yang, H. J. and S. Park, V. Pak, K. R. Chung, and D. Y. Kwon. 2011. Fermented soybean products and their bioactive compounds, pp 21-49. H. El-Shemy (ed.). Soybean and Health, InTech.
5 Ko, B. K., H. J. Ahn, F. Van den berg, C. H. Lee, and Y. S. Hong. 2009. Metabolomic insight into soy sauce through 1H NMR spectroscopy. J. Agric. Food Chem. 57: 6862-6870.   DOI   ScienceOn
6 Kwon, D. Y., J. W. Daily III, and H. J. Kim. 2010. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 30: 1-13.   DOI   ScienceOn
7 Lee, J. H., T. W. Kim, H. Lee, and H. C. Chang. 2010. Determination of microbial diversity in meju, fermented cooked soya beans, using nested PCR-denaturing gradient gel electrophoresis. Lett. Appl. Microbiol. 51: 388-394.   DOI   ScienceOn
8 Metsa-Ketela, M., L. Halo, E. Munukka, J. Hakala, P. Mantsala, and K. Ylihonko. 2002. Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl. Environ. Microbiol. 68: 4472-4479.   DOI   ScienceOn
9 Mital, B. K. and K. H. Steinkraus. 1975. Utilization of oligosaccharides by lactic-acid bacteria during fermentation of soymilk. J. Food Sci. 40:114-118.   DOI
10 Nam, Y. D., S. Y. Lee, and S. I. Lim. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155: 36-42.   DOI   ScienceOn
11 Namgung, H. J., H. J. Park, I. H. Cho, H. K. Choi, D. Y. Kwon, S. M. Shim, and Y. S. Kim. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agric. 90: 1926-1935.
12 Oude Elferink, S. J., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber, and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67: 125-132.   DOI   ScienceOn
13 Rodriguez Sanoja, R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus alpha-amylase and role of the C-terminal direct repeats in rawstarch binding. Appl. Environ. Microbiol. 66: 3350-3356.   DOI   ScienceOn
14 Park, K. Y., K. O. Jung, S. H. Rhee, and Y. H. Choi. 2003. Antimutagenic effects of doenjang (Korean fermented soypaste) and its active compounds. Mut. Res. 523-524: 43-53.
15 Park, M. K., I. H. Cho, S. Lee, H. K. Choi, D. Y. Kwon, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, during fermentation by gas chromatographymass spectrometry and principal component analysis. Food Chem. 122: 1313-1319.   DOI   ScienceOn
16 Pyo, Y. E., T. C. Lee, and Y. C. Lee. 2005. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: 215-220.
17 Rostagno, M. A., A. Villares, E. Guillamon, A. Garcia-Lafuente, and J. A. Martinez. 2009. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 1216: 2-29.   DOI   ScienceOn
18 Shibata, K., D. M. Flores, G. Kobayashi, and K. Sonomotoa. 2007. Direct l-lactic acid fermentation with sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium. Enzyme Microb. Technol. 41: 149-155.   DOI   ScienceOn
19 Egounlety, M. and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean. J. Food Eng. 56: 249-254.   DOI   ScienceOn
20 Farag, M. A., D. V. Huhman, Z. Lei, and L. W. Sumner. 2007. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68: 342-354.   DOI   ScienceOn
21 Jung, K. O., S. Y. Park, and K. Y. Park. 2006. Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition 22: 539-545.   DOI   ScienceOn
22 Goodacre, R., S. Vaidyanathan, W. B. Dunn, G. G. Harrigan, and D. B. Kell. 2004. Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends Biotechnol. 22: 245-252.   DOI   ScienceOn
23 Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, et al. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699.
24 John, R. P., G. S. Anisha, K. M. Nampoothiria, and A. Pandeya. 2009. Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145-152.
25 Kaneuchi, C., M. Seki, and K. Komagata. 1988. Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl. Environ. Microbiol. 54: 3053-3056.
26 Kang, H. J., H. J. Yang, M. J. Kim, E. S. Han, H. J. Kim, and D. Y. Kwon. 2011. Metabolomic analysis of meju during fermentation by ultra performance liquid chromatographyquadrupoletime of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem. 127: 1056-1064.   DOI   ScienceOn
27 Kawamura, S., K. Nagao, and T. Kasai. 1977. Determination of free monosaccharides and detection of sugar alcohols in mature soybean seeds. J. Nutr. Sci. Vitaminol. 23: 249-255.   DOI
28 Kim, A. J., J. N. Choi, S. B. Park, S. H. Yeo, J. H. Choi, and C. H. Lee. 2010. GC-MS based metabolite profiling of rice koji fermentation by various fungi. Biosci. Biotechnol. Biochem. 74: 2267-2272.   DOI   ScienceOn
29 Kim, T. W., J. H. Lee, S. E. Kim, M. H. Park, H. C. Chang, and H. Y. Kim. 2009. Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131: 265-271.   DOI   ScienceOn
30 Kim, J. Y., J. N. Choi, D. J. Kang, G. H. Son, Y. S. Kim, H. K. Choi, et al. 2011. Correlation between antioxidative activities and metabolite changes during cheonggukjang fermentation. Biosci. Biotechnol. Biochem. 75: 732-739.   DOI   ScienceOn
31 Kim, Y. S., M. C. Kim, S. W. Kwon, S. J. Kim, I. C. Park, J. O. Ka, and H. Y. Weon. 2011. Analyses of bacterial communities in Meju, a Korean traditional fermented soybean bricks, by cultivation-based and pyrosequencing methods. J. Microbiol. 49: 340-348.   DOI
32 Knapp, D. R. 1979. Handbook of Analytical Derivatization Reactions, pp. 2-6. John Wiley and Sons, New York.
33 Altschul, S. F., T. L. Madden, A. A. Sch ffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.   DOI   ScienceOn
34 Arbona, V., D. J. Iglesias, M. Talon, and A. G. Cadenas. 2009. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J. Agric. Food Chem. 57: 7338-7347.   DOI   ScienceOn
35 Baek, J. G., S. M. Shim, D. Y. Kwon, H. K. Choi, C. H. Lee, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Biosci. Biotechnol. Biochem. 74: 1860-1868.   DOI   ScienceOn
36 Cha, M. H. and J. F. Park. 2001. Isolation and characterization of the strain producing angiotensin converting enzyme inhibitor from soy sauce. J. Korean Soc. Food Sci. Nutr. 30: 594-599.
37 Dettmer, K., P. A. Aronov, and B. D. Hammock. 2007. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 26: 51-78.   DOI   ScienceOn
38 Cho, D. H. and W. J. Lee. 1970. Microbiological studies of Korean native soy sauce fermentation. J. Korean Agric. Chem. Soc. 13: 35-42.
39 Choi, K. S., H. C. Chung, J. D. Choi, K. I. Kwon, M. H. Im, Y. J. Kim, and J. S. Seo. 1999. Effects of meju manufacturing periods on the fermentation characteristics of kanjang, Korean traditional soy sauce. J. Korean Soc. Agric. Chem. Biotechnol. 42: 277-282.