• 제목/요약/키워드: bacterial biofilm

검색결과 261건 처리시간 0.031초

Molecular Characterization of Regulatory Genes Associated with Biofilm Variation in a Staphylococcus aureus Strain

  • Kim, Jong-Hyun;Kim, Cheorl-Ho;Hacker, Jorg;Ziebuhr, Wilma;Lee, Bok-Kwon;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Biofilm formation in association with the intercellular adhesion (icaADBC) gene cluster is a serious problem in nosocomial infections of Staphylococcus aureus. In all 112 S. aureus strains tested, the ica genes were present, and none of these strains formed biofilms. The biofilm formation is known to be changeable by environmental factors. We have found about 30% of phase variation in these strains with treatment of tetracycline, pristinamycin, and natrium chloride. However, this phenotype disappeared without these substances. Therefore, we have constructed stable biofilm-producing variants through a passage culture method. To explain the mechanism of this variation, nucleotide changes of ica genes were tested in strain S. aureus 483 and the biofilm-producing variants. No differences of DNA sequence in ica genes were found between the strains. Additionally, molecular analysis of three regulatory genes, the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA), and in addition, alternative transcription factor ${\sigma}^B$ (sigB), was performed. The data of Northern blot and complementation showed that SigB plays an important role for this biofilm variation in S. aureus 483 and the biofilm-producing variants. Sequence analysis of the sigB operon indicated three point mutations in the rsbU gene, especially in the stop codon, and two point mutations in the rsbW gene. This study shows that this variation of biofilm formation in S. aureus is deduced by the role of sigB, not agr and sarA.

Production of Bacterial Cellulose by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

  • Kim, Yong-Jun;Wee, Young-Jung;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.348-352
    • /
    • 2005
  • In this study, fermentation using a rotary biofilm contactor was conducted to improve bacterial cellulose production. We investigated the optimal fermentation conditions by using a newly isolated Gluconacetobacter sp. RKY5 in the rotary biofilm contactor. The optimal total area of discs was found to be 1,769 $cm^2$ at which bacterial cellulose and cell concentration was obtained to 5.52 g/L and 4.98 g/L, respectively. In case of aeration experiment, when the aeration rate was 1.25 vvm, the maximal bacterial cellulose (5.67 g/L) was obtained and cell concentration was 5.25 g/L.

  • PDF

Effects of N-acetylcysteine on biofilm formation by MBR sludge

  • Song, WonJung;Lade, Harshad;Yu, YoungJae;Kweon, JiHyang
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.195-203
    • /
    • 2018
  • N-acetylcysteine (NAC) has been widely used as an initial mucolytic agent and is generally used as an antioxidant to help alleviate various inflammatory symptoms. NAC reduces bacterial extracellular polymeric substances (EPS) production, bacterial adhesion to the surface and strength of mature biofilm. The efficacy has been shown to inhibit proliferation of gram-positive and gram-negative bacteria. In membrane bioreactor (MBR) processes, which contain a variety of gram negative bacteria, biofilm formation has become a serious problem in stable operation. In this study, use of NAC as an inhibitor of biofilm contamination was investigated using the center for disease control (CDC) reactors with MBR sludge. Biomass reduction was confirmed with CLSM images of membrane surfaces by addition of NAC, which was more efficient as the concentration of NAC was increased to 1.5 mg/mL. NAC addition also showed decreases in EPS concentrations of the preformed biofilm, indicating that NAC was able to degrade EPS in the mature biofilm. NAC addition was also effective to inhibit biofilm formation by MBR sludge, which consisted of various microorganisms in consortia.

Porphyromonas gingivalis 바이오필름에 의한 숙주 면역반응의 교란 (Perturbation of host responses by Porphyromonas gingivalis biofilm)

  • 전우석;김성조;최점일
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.827-836
    • /
    • 2002
  • The present study was performed to evaluate how cellular and humoral immune responses were perturbed by immunization of mixed periodontal bacterial biofilms. Each group of mice was immunizared with 1) Poqhyromonas gingivalis (P. gingivaliis) grown as a planktonic culture, 2) Fusobacterium nucleatum (F. nucleatum), 3) P. gingivalis grown as a biofilm, or 4) mixed P. gingivalis plus F. nucleatum grown as a biofilm culture, respectively. Immune mouse sera were collected from each mouse. Spleens were harvested to isolate T cells and consequently stimulated with antigen presenting cells and P. gingivalis whole cell antigen to establish P. gingivalis-specific T cell lines. There were no significant differences in the mean anti- gingivalis IgG antibody titers among mouse groups. Immunization of mice with pure P. gingivalis biofilm or mixed P gingivalis plus F. nucleatum biofilm resulted in significant reduction o f antibody avidity and opsonophagocytois function. INF-$\gamma$production by P. gingivalis-specific T cell lines was also substantially recluced in mouse groups immunized with the biofilm. It was concluded that P. gingivalis biofilm perturbs the cellular and humoral immune responses in periodontal disease.

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin;Namkung, Jong-Uk;Ha, Kyung-Won;Jun, Hye-Kyoung;Kim, Hyun Young;Choi, Bong-Kyu
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.111-118
    • /
    • 2021
  • Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.

생물막 세균의 염소소독제에 대한 내성 (Resistance of Biofilm Bacteria to Chlorination)

  • 조재창;박성주;김상종
    • 미생물학회지
    • /
    • 제31권3호
    • /
    • pp.255-260
    • /
    • 1993
  • Enterobacter cloacae 를 이용하여 슬라이드 (slide glass) 와 아연도강관조각 (galvanized-iron coupon) 상에 생물막을 형성시킨 후 부착생장세균의 염소에 대한 내성을 측정한 결과 부유생장세균에 비해 각각 14배와 380배의 내성증가를 나타내었다. 또한 입자에 부착된 세균군집의 경우 부유세균군집에 비해 48배로 내성이 증가되었다. 슬라이드와 아연도강관조각을 수돗물에 75일간 접촉하였을때 각각 $4.75 {\times} 10^{4}$ cfu/$cm^{2}$, $1.12 {\times} 10^5 cfu/cm^{2}$의 생물막이 형성되는 것을 관찰하였다. 따라서 수돗물에서의 장내세균과 종속영양세균 입자에 부착 혹은 흡착되거나 응집된 상태로 존재함으로써 잔류염소에 대한 내성을 가지게 되며, 또한 정수과정에서 염소살균을 피하여 비급수계통으로 유입되면 배급수관 내벽에 생물막을 형성하여 잔류업소에 대한 내성을 가지게 됨으로써 배급수계통에서 생장하는 것으로 판단된다.

  • PDF

Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$

  • Kang Hye-Sun;Lee Jong-Kwang;Kim Moo-Hoon;Park Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.399-407
    • /
    • 2006
  • In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.

Microbial Structure and Community of RBC Biofilm Removing Nitrate and Phosphorus from Domestic Wastewater

  • Lee, Han-Woong;Choi, Eui-So;Yun, Zu-Whan;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1459-1469
    • /
    • 2008
  • Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100${\mu}m$. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was $\beta$- and $\gamma$-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250${\mu}m$. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250${\mu}m$, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250${\mu}m$. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate removal by an RBC system.

세균 생물막 형성의 단계별 특징 (Characteristics of Developmental Stages in Bacterial Biofilm Formation)

  • 김창범;노종복;이현경;최상호;이동훈;박순정;이규호
    • 한국미생물·생명공학회지
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Since Anton van Leeuwen­hoek first observed a surface-associated multicellular structure of bacterial cells in the 17th century, it has been shown to exhibit an ability to form a biofilm by numerous bacterial species. The biofilm formation is composed of distinct developmental stages, which include an attachment/adhesion of a single cell, a proliferation toward monolayered coverage, a propagation to aggregated microcolony, a maturation to 3-dimensional structure, and subsequently a local degradation. Investigation to identify the essential factors for bacterial biofilm formation has been performed via classical genetic approaches as well as recently developed technologies. The initial stage requires bacterial motility provided by a flagellum, and outermembrane components for surface signal interaction. Type IV-pilus and autoaggregation factors, e.g., type I-fimbriae or Ag43, are necessary to reach the stages of monolayer and micro colony. The mature biofilm is equipped with extracellular polymeric matrix and internal water-filled channels. This complex architecture can be achieved by differential expressions of several hundred genes, among which the most studied are the genes encoding exopolysaccharide biosyntheses and quorum-sensing regulatory components. The status of our knowledge for the biofilms found in humans and natural ecosystems is discussed in this minireview.