Browse > Article

Microbial Structure and Community of RBC Biofilm Removing Nitrate and Phosphorus from Domestic Wastewater  

Lee, Han-Woong (Hazardous Substance Research Center-S&SW Louisiana State University)
Choi, Eui-So (Department of Civil and Environmental Engineering, Korea University)
Yun, Zu-Whan (Department of Environmental Engineering, Korea University)
Park, Yong-Keun (Hazardous Substance Research Center-S&SW Louisiana State University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.8, 2008 , pp. 1459-1469 More about this Journal
Abstract
Using a rotating biological contactor modified with a sequencing bath reactor system (SBRBC) designed and operated to remove phosphate and nitrogen [58], the microbial community structure of the biofilm from the SBRBC system was characterized based on the extracellular polymeric substance (EPS) constituents, electron microscopy, and molecular techniques. Protein and carbohydrate were identified as the major EPS constituents at three different biofilm thicknesses, where the amount of EPS and bacterial cell number were highest in the initial thickness of 0-100${\mu}m$. However, the percent of carbohydrate in the total amount of EPS decreased by about 11.23%, whereas the percent of protein increased by about 11.15% as the biofilm grew. Thus, an abundant quantity of EPS and cell mass, as well as a specific quality of EPS were apparently needed to attach to the substratum in the first step of the biofilm growth. A FISH analysis revealed that the dominant phylogenetic group was $\beta$- and $\gamma$-Proteobacteria, where a significant subclass of Proteobacteria for removing phosphate and/or nitrate was found within a biofilm thickness of 0-250${\mu}m$. In addition, 16S rDNA clone libraries revealed that Klebsiella sp. and Citrobacter sp. were most dominant within the initial biofilm thickness of 0-250${\mu}m$, whereas sulfur-oxidizing bacteria, such as Beggiatoa sp. and Thiothrix sp., were detected in a biofilm thickness over 250${\mu}m$. The results of the bacterial community structure analysis using molecular techniques agreed with the results of the morphological structure based on scanning electron microscopy. Therefore, the overall results indicated that coliform bacteria participated in the nitrate and phosphorus removal when using the SBRBC system. Moreover, the structure of the biofilm was also found to be related to the EPS constituents, as well as the nitrogen and phosphate removal efficiency. Consequently, since this is the first identification of the bacterial community and structure of the biofilm from an RBC simultaneously removing nitrogen and phosphate from domestic wastewater, and it is hoped that the present results may provide a foundation for understanding nitrate and phosphate removal by an RBC system.
Keywords
Biofilm; rotating biological contactor; FISH; 16S rDNA; bacterial community;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Ahmad, A., J. P. Barry, and D. C. Nelson. 1999. Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl. Environ. Microbiol. 65: 270-277
2 Amann, R. I., L. Krumholz, and D. A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770   DOI
3 Davey, M. E. and G.. A. O'Toole. 2000. Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847-867   DOI   ScienceOn
4 Dignac, M. F., V. Urbain, D. Rybacki, A. Bruchet, D. Snidaro, and P. Scribe. 1998. Chemical description of extracellular polymers: Implication on activated sludge floc structure. Water Sci. Technol. 38: 45-53
5 Gerhart, P., R. G. Murray, W. A. Wood, and N. R. Krieg. 1994. Methods for General and Molecular Bacteriology. American Society of Microbiology, Washington, D.C.
6 Griffin, P. and G. E. Findlay. 2000. Process and engineering improvements to rotating biological contactor design. Water Sci. Technol. 41: 137-144
7 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, pp. 458-465, 9th Ed. Williams & Wilkins, Baltimore
8 Larkin, L. M. 1989. Genus II. Thiothrix winogradsky 1888, pp. 2098-2101. In Staley, J. P., M. P. Bryant. N. Pfennig, and J. G. Holt (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 3. Williams & Wilkins, Baltimore
9 Lee, H. W., S. Y. Lee, J. O. Lee, H. G. Kim, J. B. Park, E. S. Choi, D. H. Park, and Y. K. Park. 2003. The microbial community analysis of 5-stage BNR process with step feed system. Water Sci. Technol. 48: 135-141
10 Lee, J. W., E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, J. W. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus, and prediction of microbial community composition with its function, in an anaerobicanoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994-1001
11 Madigan, M. T., J. M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms, 10th Ed. Pearson Education Inc., Upper Saddle River, New Jersey
12 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (ribosomal database project) continues. Nucleic Acids Res. 28: 173-174   DOI   ScienceOn
13 Neef, A. 1997. Ph.D. thesis. Technical University, Munich, Germany
14 Neu, T. R. and K. C. Marshall. 1990. Bacterial polymers: Physicochemical aspects of their interactions at interfaces. J. Biomater. Appl. 5: 107-133   DOI
15 Pillay, D., B. Pillay, A. O. Olaniran, W. H. L. Stafford, and Don A. Cowan. 2007. Microbial community profiling in cis- and trans-dichloroethene enrichment systems using denaturing gradient gel electrophoresis. J. Microbiol. Biotechnol. 17: 560-570   과학기술학회마을
16 Pinar, G., E. Duque, A. Haidour, J. M. Oliva, L. Sanchez-Barbero, V. Calvo, and J. L. Ramos. 1997. Removal of high concentrations of nitrate from industrial wastewater by bacteria. Appl. Environ. Microbiol. 63: 2071-2073
17 Gupta, A. B. and S. K. Gupta. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Res. 35: 1714-1722   DOI   ScienceOn
18 Tchobanoglous, G. and F. L. Burton. 1990. Wastewater Engineering Treatment, Disposal and Reuse, 3rd Ed. McGraw-Hill Inc. Publishers, New York, U.S.A.
19 Williams, T. M. and R. F. Unz. 1989. The nutrition of Thiothrix, Type 021N, Beggiatoa and Leucothrix strains. Water Res. 23:15-22   DOI   ScienceOn
20 Yun, Z., H. Lee, and E. Choi. 2004. Enhanced biological phosphorus removal in RBC with SBR modification. Water Sci. Technol. 50: 121-130
21 Ju, D.-H., M.-K. Choi, J.-H. Ahn, M.-H. Kim, J.-C. Cho, T. Kim, T. Kim, and J.-O. Ka. 2007. Molecular and ecological analyses of microbial community structures in biofilms of a full-scale aerated up-flow biobead process. J. Microbiol. Biotechnol. 17: 253-261   과학기술학회마을
22 Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162
23 Sutherland, I. W. 1997. Microbial exopolysaccharides - structural subtleties and their consequences. Pure Appl. Chem. 69: 1911-1917   DOI   ScienceOn
24 Manz, W., R. Amann, W. Ludwig, M. Wagner, and K.-H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600   DOI
25 You, S. J., C. L. Hsu, S. H. Chuang, and C. F. Ouyang. 2003. Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Res. 37: 2281-2290   DOI   ScienceOn
26 Manz, W., R. Amann, M. Vancanneyt, and K.-H. Scheifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in natural environment. Microbiology 142: 1097-1106   DOI   ScienceOn
27 Rijnaarts, H. H. M., W. Norde, E. J. Bouwer, J. Lyklema, and A. J. B. Zehnder. 1995. Reversibility and mechanism of bacterial adhesion. Colloids Surf. B Biointerf. 4: 5-22   DOI   ScienceOn
28 Robert, J. S., T. Mino, and M. Onuki. 2003. The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol. Rev. 27: 555-565
29 Wingender, J., T. R. Neu, and H. C. Flemming. 1999. What are bacterial extracellular polymeric substances, pp. 1-20. In J. Wingender, T. R. Neu, and H.-C. Flemming (eds.), Microbial Extracellular Polymeric Substances: Characterization, Structure, and Function. Springer, Berlin, Germany
30 Bond, P. L., P. Hugenholtz, J. Keller, and L. L. Blackal. 1995. Bacterial community structures of phosphate removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910-1916
31 McHatton, S. C., J. P. Barry, H. W. Jannasch, and D. C. Nelson. 1996. High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl. Environ. Microbiol. 62: 954-958
32 Pinar, G., K. Kovarova, T. Egli, and J. L. Ramos. 1998. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures. Appl. Environ. Microbiol. 64: 2970-2976
33 Mino, T., M. C. M. van Loosdrecht, and J. J. Heijnen. 1998. Microbiology and biochemistry of the enhanced biological phosphate removal processes. Water Res. 32: 3193-3207   DOI   ScienceOn
34 Pynaert, K., B. F. Smets, S. Wyffels, D. Beheydt, S. D. Siciliano, and W. Verstraete. 2003. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Appl. Environ. Microbiol. 69: 3626-3635   DOI   ScienceOn
35 Tawfik, A., B. Klapwijk, F. El-Gohary, and G. Lettinga. 2002. Treatment of anaerobically treated domestic wastewater using rotating biological contactor. Water Sci. Technol. 45: 371-376
36 APHA. 1995. Standard Methods for Examination of Water and Wastewater, 19th Ed. USA, Public Health Association. Washington, D.C
37 Crocetti, G. R., P. Hugenholtz, P. L. Bond, A. Schuler, J. Keller, D. Jenkins, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNAdirected probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175-1182   DOI   ScienceOn
38 Lee, H. W., S. Y. Lee, J. W. Lee, J. B. Park, E. S. Choi, and Y. K. Park. 2002. Molecular characterization of microbial community in nitrate-removing activated sludge. FEMS Microbiol. Ecol. 41: 85-94   DOI   ScienceOn
39 Jung, Y.-J., C. S. Park, H. G. Lee, and J. Cha. 2006. Isolation of a novel gellan-depolymerizing Bacillus sp. strain YJ-1. J. Microbiol. Biotechnol. 16: 1868-1873   과학기술학회마을
40 Lee, S. Y., J. B. Bollinger, D. Bezdicek, and A. Ogram. 1996. Estimation of the abundance of an unculturable soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787-3793
41 Yun, Z., W. Jo, Y. Yi, I. Choi, E. Choi, and M. Min. 2000. Effects of sludge settling characteristics in BNR system performance. Water Sci. Technol. 42: 283-288
42 Tal, Y., J. E. Watts, and H. J. Schreier. 2006. Anaerobic ammonium-oxidizing (anammox) bacteria and associated activity in fixed-film biofilters of a marine recirculating aquaculture system. Appl. Environ. Microbiol. 72: 2896-2904   DOI   ScienceOn
43 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Roudall. 1951. Protein measurement with folin-phenol reagent. J. Biol. Chem. 193: 265-275
44 Schramm, A., D. De Beer, M. Wagner, and R. Amann. 1998. Identification and activity in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 64: 3480-3485
45 Brosius, J., J. K. Palmer, H. P. Kennedy, and H. F. Noller. 1978 Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805
46 Pynaert, K., B. F. Smets, D. Beheydt, and W. Verstraete. 2004. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environ. Sci. Technol. 38: 1228-1235   DOI   ScienceOn
47 Roller, C., W. Wagner, R. Amann, W. Ludwig, and K.-H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140: 2849-2858   DOI   ScienceOn
48 Odintsova, E. V., A. P. Wood, and D. P. Kelly. 1993. Chemolithoautotrophic growth of Thiothrix ramosa. Arch. Microbiol. 160: 152-157   DOI   ScienceOn
49 Zhang, X., P. L. Bishop, and B. Kinkle. 1999. Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci. Technol. 39: 211-218
50 Sakano, Y., K. D. Pickering, P. F. Strom, and L. J. Kerkhof. 2002. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support. Appl. Environ. Microbiol. 68: 2285-2293   DOI   ScienceOn
51 Novak, J. T. and B. E. Haugan. 1981. Polymer extraction from activated sludge. J. Water Poll. Control Fed. 53: 1420-1424
52 Sutherland, I. W. and L. Kennedy. 1996. Polysaccharide lyases from gellan-producing Sphingomonas spp. Microbiology 142: 867-872   DOI   ScienceOn
53 Zopfi, J., K. Thomas, P. L. Nielsen, and B. B. Jorgensen. 2001. Ecology of Thioploca spp.: Nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl. Environ. Microbiol. 67:5530-5537   DOI   ScienceOn
54 Egli, K., F. Bosshard, C. Werlen, P. Lais, H. Siegrist, A. J. Zehnder, and J. R. van der Meer. 2003. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microb. Ecol. 45: 419-432   DOI   ScienceOn
55 McSwain, B. S., R. L. Irvine, M. Hausner, and P. A. Wilderer. 2005. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl. Environ. Microbiol. 71: 1051-1057
56 Mikkelsen, L. H. and K. Keiding. 2002. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Res. 36: 2451-2462   DOI   ScienceOn
57 Nielsen, P. H., M. A. de Muro, and J. L. Nielsen. 2000. Studies on the in situ physiology of Thiothrix spp. present in activated sludge. Environ. Microbiol. 2: 389-398   DOI   ScienceOn
58 Choi, E., Z. Yun, Y. Park, H. Lee, H. Jeong, K. Kim, H. Lee, K. Rho, and K. Gil. 2001. Extracellular polymeric substances in relation to nutrient removal from a sequencing batch biofilm reactor. Water Sci. Technol. 43: 185-192
59 Gehr, R. and J. Henry. 1983. Removal of extracellular materials: Techniques and pitfalls. Water Res. 17: 1743-1748   DOI   ScienceOn
60 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98
61 Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J. W. Metzger, K. H. Schleifer, and M. Wagner. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 93-106   DOI   ScienceOn