Browse > Article

Molecular Characterization of Regulatory Genes Associated with Biofilm Variation in a Staphylococcus aureus Strain  

Kim, Jong-Hyun (Division of Enteric Bacterial Infections, Center for Infectious Diseases, National Institute of Health)
Kim, Cheorl-Ho (Department of Biological Science, Sungkyunkwan University)
Hacker, Jorg (Institut fur Molekulare Infektionsbiologie)
Ziebuhr, Wilma (Institut fur Molekulare Infektionsbiologie)
Lee, Bok-Kwon (Division of Enteric Bacterial Infections, Center for Infectious Diseases, National Institute of Health)
Cho, Seung-Hak (Division of Enteric Bacterial Infections, Center for Infectious Diseases, National Institute of Health)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.1, 2008 , pp. 28-34 More about this Journal
Abstract
Biofilm formation in association with the intercellular adhesion (icaADBC) gene cluster is a serious problem in nosocomial infections of Staphylococcus aureus. In all 112 S. aureus strains tested, the ica genes were present, and none of these strains formed biofilms. The biofilm formation is known to be changeable by environmental factors. We have found about 30% of phase variation in these strains with treatment of tetracycline, pristinamycin, and natrium chloride. However, this phenotype disappeared without these substances. Therefore, we have constructed stable biofilm-producing variants through a passage culture method. To explain the mechanism of this variation, nucleotide changes of ica genes were tested in strain S. aureus 483 and the biofilm-producing variants. No differences of DNA sequence in ica genes were found between the strains. Additionally, molecular analysis of three regulatory genes, the accessory gene regulator (agr) and the staphylococcal accessory regulator (sarA), and in addition, alternative transcription factor ${\sigma}^B$ (sigB), was performed. The data of Northern blot and complementation showed that SigB plays an important role for this biofilm variation in S. aureus 483 and the biofilm-producing variants. Sequence analysis of the sigB operon indicated three point mutations in the rsbU gene, especially in the stop codon, and two point mutations in the rsbW gene. This study shows that this variation of biofilm formation in S. aureus is deduced by the role of sigB, not agr and sarA.
Keywords
Biofilm; variation; Staphylococcus aureus; regulatory genes; sigB;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Baselga, R., I. Albizu, M. de La Cruz, E. del Cacho, M. Barberan, and B. Amorena. 1993. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 61: 4857-4862
2 Cramton, S. E., C. Gerke, N. F. Schnell, W. W. Nichols, and F. Gotz. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 67: 5427-5433
3 Dickinson, G. M. and A. L. Bisno. 1989. Infections associated with indwelling devices: Infections related to extravascular devices. Antimicrob. Agents Chemother. 33: 602-607   DOI   ScienceOn
4 Kho, D. H., J. H. Jang, H. S. Kim, K. S. Kim, and J. K. Lee. 2003. Quorum sensing of Rhodobacter sphaeroides negatively regulates cellular poly-${\beta}$-hydroxybutyrate content under aerobic growth conditions. J. Microbiol. Biotechnol. 13: 477-481
5 Kiem, S., W. S. Oh, K. R. Peck, N. Y. Lee, J. Y. Lee, J. H. Song, E. S. Hwang, E. C. Kim, C. Y. Cha, and K. W. Choe. 2004. Phase variation of biofilm formation in Staphylococcus aureus by IS256 insertion and its impact on the capacity adhering to polyurethane surface. J. Kor. Med. Sci. 19: 779-782   DOI   ScienceOn
6 Kloos, W. E. and T. L. Bannerman. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 7: 117-140   DOI
7 Linhardt, F., W. Ziebuhr, P. Meyer, W. Witte, and J. Hacker. 1992. Pulsed-field gel electrophoresis of genomic restriction fragments as a tool for the epidemiological analysis of Staphylococcus aureus and coagulase-negative staphylococci. FEMS Microbiol. Lett. 95: 181-186   DOI
8 Pratten, J., S. J. Foster, P. F. Chan, M. Wilson, and S. P. Nair. 2001. Staphylococcus aureus accessory regulators expression within biofilms and effect on adhesion. Microbes Infect. 3: 633-637   DOI   ScienceOn
9 Ziebuhr, W., V. Krimmer, S. Rachid, I. Lobner, F. Gotz, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32: 345-356   DOI   ScienceOn
10 Davies, D. G., M. R. Parsek, J. P. Pearson, B. H. Iglewski, J. W. Costerton, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295-298   DOI   ScienceOn
11 Doss, S. A., G. S. Tillotson, and S. G. Amyes. 1993. Effect of subinhibitory concentrations of antibiotics on the virulence of Staphylococcus aureus. J. Appl. Bacteriol. 75: 123-128   DOI
12 Robinson, D. L., V. G. Fowler, D. J. Sexton, R. G. Corey, and P. J. Conlon. 1997. Bacterial endocarditis in hemodialysis patients. Am. J. Kidney Dis. 30: 521-524   DOI   ScienceOn
13 Valle, J., A. Toledo-Arana, C. Berasain, J.-M. Ghigo, B. Amorena, J. S. Penades, and I. Lasa. 2003. SarA and not ${\sigma}^B$ is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol. 48: 1075-1087   DOI   ScienceOn
14 Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284: 1318-1322   DOI
15 Cho, B. G., C. H. Kim, B. K. Lee, and S. H. Cho. 2005. Comparison of antibiotic resistance of blood culture strains and saprophytic isolates in the presence of biofilms, formed by intercellular adhesion (ica) gene cluster in Staphylococcus epidermidis. J. Microbiol. Biotechnol. 15: 728-733   과학기술학회마을
16 Donlan, R. M. and J. W. Costerton. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167-193   DOI   ScienceOn
17 Gertz, S., S. Engelmann, R. Schmid, A. K. Ziebandt, K. Tischer, C. Scharf, J. Hacker, and M. Hecker. 2000. Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182: 6983-6991   DOI   ScienceOn
18 Heilmann, C., O. Schweitzer, C. Gerke, N. Vanittanakom, D. Mack, and F. Götz. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20: 1083-1091   DOI   ScienceOn
19 Kullik, I. and P. Giachino. 1997. The alternative sigma factor ${\sigma}^B$ in Staphylococcus aureus: Regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167: 151-159   DOI   ScienceOn
20 Cho, S. H., K. Naber, J. Hacker, and W. Ziebuhr. 2002. Detection of the icaADBC gene cluster and biofilm formation in Staphylococcus epidermidis isolates from catheter-related urinary tract infections. Int. J. Antimicrob. Agents 19: 570-575   DOI   ScienceOn
21 Ziebuhr, W., C. Heilmann, F. Götz, P. Meyer, K. Wilms, E. Straube, and J. Hacker. 1997. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect. Immun. 65: 890-896
22 Gotz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43: 1367-1378   DOI   ScienceOn
23 Vuong, C., H. L. Saenz, F. Goetz, and M. Otto. 2000. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182: 1688-1693   DOI   ScienceOn
24 Vychytil, A., M. Lorenz, B. Schneider, W. H. Horl, and M. Haag-Weber. 1998. New criteria for management of catheter infections in peritoneal dialysis patients using ultrasonography. J. Am. Soc. Nephrol. 9: 290-296
25 Christensen, G. D., W. A. Simpson, J. J. Younger, L. M. Baddour, F. F. Barrett, D. M. Melton, and E. H. Beachey. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22: 996-1006
26 Miyazaki, E., J. M. Chen, C. Ko, and W. R. Bishai. 1999. The Staphylococcus aureus rsbW (orf159) gene encodes an antisigma factor of SigB. J. Bacteriol. 181: 2846-2851
27 Deighton, M. A., S. Pearson, J. Capstick, D. Spelman, and R. Borland. 1992. Phenotypic variation of Staphylococcus epidermidis isolated from a patient with native valve endocarditis. J. Clin. Microbiol. 30: 2385-2390
28 Mack, D., W. Fischer, A. Krokotsch, K. Leopold, R. Hartmann, H. Egge, and R. Laufs. 1996. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear $\beta$-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol. 178: 175-183   DOI
29 Rachid, S., K. Ohlsen, U. Wallner, J. Hacker, M. Hecker, and W. Ziebuhr. 2000. Alternative transcription factor sigma(B) is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824-6826   DOI   ScienceOn
30 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
31 Palma, M. and A. L. Cheung. 2001. ${\sigma}^B$ activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect. Immun. 69: 7858-7865   DOI   ScienceOn
32 Cramton, C. E., M. Ulrich, F. Götz, and G. Döring. 2001. Anaerobic conditions induce expression of polysaccharide intercellular adhesin in Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69: 4079-4085   DOI   ScienceOn
33 Wu, S., H. de Lencastre, and A. Tomasz. 1996. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: Molecular cloning and DNA sequencing. J. Bacteriol. 178: 6036-6042   DOI
34 von Bodman, S. B., D. R. Majerczak, and D. L. Coplin. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp Stewartii. Proc. Natl. Acad. Sci. USA 95: 7687-7692
35 Goering, R. N. and A. Winters. 1992. Rapid method for epidemiological evaluation of Gram-positive cocci by field inversion gel electrophoresis. J. Clin. Microbiol. 30: 577-580
36 Rachid, S., K. Ohlsen, W. Witte, J. Hacker, and W. Ziebuhr. 2000. Effect of subinhibitory antibiotic concentrations on the polysaccharide intercellular adhesin (PIA) expression in biofilm forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 44: 3357-3363   DOI   ScienceOn