Browse > Article

Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$  

Kang Hye-Sun (Department of Biological Engineering, Seokyeong University)
Lee Jong-Kwang (Samsung Engineering R&D Center)
Kim Moo-Hoon (Samsung Engineering R&D Center)
Park Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.3, 2006 , pp. 399-407 More about this Journal
Abstract
In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.
Keywords
Electrochemical reactor; electric conductive biofilter; BTEX degradation; VOC; biofilm; Burkholderia cepacia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Bakermans, C. and K. H. Nealson. 2004. Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J. Bacteriol. 186: 2340-2345   DOI
2 Frye, R. J., D. Welsh, T. M. Berry, B. A. Stevenson, and T. McCallum. 1992. Removal of contaminant organic gases from air in closed systems by soil. Soil Biol. Biochem. 24: 607-612   DOI   ScienceOn
3 Kane, S. R., H. R. Beller, T. C. Legler, C. J. Koester, H. C. Pinkart, R. U. Halden, and A. M Happel. 2001. Aerobic biodegradation of methyl tert-butyl ether by aquifer bacteria from leaking underground storage tank sites. Appl. Environ. Microbiol. 67: 5824-5829   DOI   ScienceOn
4 Kim, J. D., S. H. Shim, and C. G. Lee. 2005. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15: 337- 343   과학기술학회마을
5 Krieger, C. J., H. R. Beller, M. Reinhard, and A. Spormann. 1999. Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403-6410
6 Nicholson, C. A. and B. Z. Fathepure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria and aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225   DOI
7 Oh, Y. S. and R. Bartha. 1994. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors. Appl. Environ. Microbiol. 60: 2717-2722
8 Saeed, T. and M. Al Mutairi. 1999. Chemical composition of the water-soluble fraction of the leaded gasoline in seawater. Environ. Int. 25: 117-129   DOI   ScienceOn
9 De Heyder, B., A. Overmeire, H. van Langenhove, and W. Verstracte. 1994. Ethene removal from a synthetic waste gas using a dry biobed. Biotechnol. Bioeng. 44: 642-648   DOI   ScienceOn
10 Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.), 1992. Standard Methods for the Examination of Water and Wastewater. 18th Edition, pp. 4-18. American Public Health Association, NW Washington, DC20005
11 Rooney-Varga, J. N., R. T. Andeson, J. L. Fraga, D. Ringelberg, and D. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleumcontaminated aquifer. Appl. Environ. Microbiol. 65: 3056-3036
12 Oh, Y. S., Y.-H. Lee, J.-H. Lee, and S.-C. Choi. 2003. Characterization of nitrobenzene degradation by Mycobacterium chelonae strain NB01. J. Microbiol. Biotechnol. 13: 309-312
13 Morgan, R. M., T. D. Pihl, J. Nolling, and J. N. Reeve. 1997. Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH. J. Bacteriol. 179: 889-898   DOI
14 Carla, A. N. and B. Z. Fatherpure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225   DOI
15 Oh. K. B., W. Mar, and I. M. Chang. 2001. Biodegradation of hydrocarbons by an organic solvent-tolerant fungus Cladosporium resinae NK-1. J. Microbiol. Biotechnol. 11: 56-60
16 Chang, R. 1998. Chemistry, p. 963. 6th Ed. McGraw-Hill. New York
17 Prenafeta-Boldú, F. X., J. Vervoort, J. T. c. Grotenhuis, and J. w. van Groenestijn. 2002. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora. strain Ti. Appl. Environ. Microbiol. 68: 2660-2665   DOI
18 Kwon, H.-H., E. Y. Lee, K.-S. Cho, and H. W. Ryu. 2003. Benzene biodegradation using the polyurethane biofilter immobilized with Strenotrophomonas maltophilia T3-c. J. Microbiol. Biotechnol. 13: 70-76
19 Kwong, S. C. W. and G. Rao. 1991. Utility of culture redox potential for identifying static changes in amino acid fermentation. Biotechnol. Bioeng. 38: 1034-1040   DOI
20 Yadav, J. S. and C. A. Reddy. 1993. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignindegrading basidiomycete Phanerocheaete chrysosporium. Appl. Environ. Microbiol. 59: 756-762
21 Moller, S., A. R. Pederson, L. K. Poulsen, E. Arvin, and S. Molin. 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632-4640
22 Han, W. S. and T. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
23 Patil, N., U. Sharanagouda, J. H. Niazi, C. K. Kim, and T. B. Karegoudar. 2003. Degradation of salicylic acid by free and immobilized cells of Pseudomonas sp. strain NGK1. J. Microbiol. Biotechnol. 13: 29-34   DOI   ScienceOn
24 Burland, S. M. and E. A. Edward. 1999. Anaerobic benzene biodegradation linked to nitrate reduction. Appl. Environ. Microbiol. 65: 529-533
25 Hritova, K., B. Gebreyesus, D. Mackay, and K. M. Scow. 2003. Naturally occurring bacteria similar to the methyl tertbutyl ether (MTBE)-degrading strain PM1 are present in MTBE-contaminated groundwater. Appl. Environ. Microbiol. 69: 2616-2623   DOI
26 Riondet, C., R. Cachon, Y. Waché, G. Alcaraz, and C. Divies. 1999. Changes in the proton motive force in Escherichia coli in response to external oxidoreduction potential. Eur. J. Biochem. 262: 595-599   DOI   ScienceOn
27 Unden, G., M. Trageser, and A. Duchêne, 1990. Effect of positive redox potentials (greater than +400 mV) on the expression of anaerobic respiratory enzymes in Escherichia coli. Mol. Microbiol. 4: 315-319   DOI   ScienceOn
28 Baek, K. H., H. S. Kim, S. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905   DOI   ScienceOn
29 Alexandrino, M., C. Knief, and A. Lipski. 2001. Stableisotope- based labeling of styrene-degrading microorganisms in biofilters. Appl. Environ. Microbiol. 67: 4796-4804   DOI
30 Hanson, J. R., C. E. Ackerman, and K. M. Scow. 1999. Biodegradation of methyl-tert-butyl ether by a bacterial pure culture. Appl. Environ. Microbiol. 65: 4788-4792
31 Moll, D. M., R. S. Summers, and A. Dreen. 1998. Microbial characterization of biological filters used for drinking water treatment. Appl. Environ. Microbiol. 64: 2755-2759
32 Xu, K. D., P. S. Stewart, F. Xia, C. T. Huang, and G. A. Mcfeters. 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64: 4035-4039
33 Chang, M. K., Tlc. Voice, and C. S. Criddle. 1993. Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolated. Biotechnol. Bioeng. 41: 1057-1065   DOI   ScienceOn
34 Elsgaard, L. 1998. Ethylene removal by a biofilter with immobilized bacteria. Appl. Environ. Microbiol. 64: 4168- 4173
35 Elsgaaro, L. 2000. Ethylene removal at low temperatures under biofilter and batch conditions. Appl. Environ. Microbiol. 66: 3878-3882   DOI
36 van Ginkel, C. G., H. G. J. Weltern, and J. A. M. de Bont. 1987. Growth and stability of ethane-utilizing bacteria on compost at very low substrate concentrations. FEMS Microbiol. Ecol. 45: 65-69   DOI
37 Bowlen, G. F. and D. S. Kosson. 1995. In situ processes for bioremediation of BTEX and petroleum fuel products, pp. 515-542. In L. Y. Young and C. E. Cerniglia (eds.), Microbial Transformations and Degradation of Toxic Organic Chemicals. Wiley-Liss, Inc., New York, N.Y
38 Mehlman, M. A. 1992. Dangerous and cancer-causing properties of products and chemicals in the oil refining and petrochemical industry. VIII. Health effects of motor fuels: Carcinogenicity of gasoline - scientific update. Environ. Res. 59: 238-249   DOI   ScienceOn
39 Stoodley, P., D. deBeer, and H. M. Lappin-Scott. 1977. Influence of electric fields and pH on biofilm structures as related to the bioelectric effect. Antimicrob. Agent Chemother. 41: 1876-1879
40 Lee, Y. N., J. H. Lee, H. J. Cho, E. J. Shin, J. W. Park, and J. H. Park. 1999. Characterization for Campylobacter newly isolated from swine gastric mucosa. J. Microbiol. Biotechnol. 9: 778-78
41 Riondet, C., R. Cachon, Y. Waché, G. Alcaraz, and C. Diviès. 2000. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 182: 620-626   DOI