DOI QR코드

DOI QR Code

Inhibition of biofilm formation of periodontal pathogens by D-Arabinose

  • An, Sun-Jin (Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University) ;
  • Namkung, Jong-Uk (Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University) ;
  • Ha, Kyung-Won (Bone Science R&D Center, OSSTEM IMPLANT Co., Ltd) ;
  • Jun, Hye-Kyoung (Bone Science R&D Center, OSSTEM IMPLANT Co., Ltd) ;
  • Kim, Hyun Young (Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University) ;
  • Choi, Bong-Kyu (Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University)
  • Received : 2021.08.26
  • Accepted : 2021.09.01
  • Published : 2021.09.30

Abstract

Periodontitis and periimplantitis are caused as a result of dental biofilm formation. This biofilm is composed of multiple species of pathogens. Therefore, controlling biofilm formation is critical for disease prevention. To inhibit biofilm formation, sugars can be used to interrupt lectin-involving interactions between bacteria or between bacteria and a host. In this study, we evaluated the effect of D-Arabinose on biofilm formation of putative periodontal pathogens as well as the quorum sensing activity and whole protein profiles of the pathogens. Crystal violet staining, confocal laser scanning microscopy, and scanning electron microscopy revealed that D-Arabinose inhibited biofilm formation of Porphyromonas gingivalis, Fusobacterium nucleatum, and Tannerella forsythia. D-Arabinose also significantly inhibited the activity of autoinducer 2 of F. nucleatum and the expression of representative bacterial virulence genes. Furthermore, D-Arabinose treatment altered the expression of some bacterial proteins. These results demonstrate that D-Arabinose can be used as an antibiofilm agent for the prevention of periodontal infections.

Keywords

Acknowledgement

This work was supported by the World Class 300 Project (R&D) from Korea Institute for Advancement of Technology (grant number P108100012) and the Dental Research Institute of Seoul National University.

References

  1. Daubert DM, Weinstein BF. Biofilm as a risk factor in implant treatment. Periodontol 2000 2019;81:29-40. doi: 10.1111/prd.12280.
  2. de Melo F, Milanesi FC, Angst PDM, Oppermann RV. A systematic review of the microbiota composition in various periimplant conditions: data from 16S rRNA gene sequencing. Arch Oral Biol 2020;117:104776. doi: 10.1016/j.archoralbio.2020.104776.
  3. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 2012;6:1176-85. doi: 10.1038/ismej.2011.191.
  4. Haffajee AD, Socransky SS. Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 1994;5:78-111. doi: 10.1111/j.1600-0757.1994.tb00020.x.
  5. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol 2021;21:426-40. doi: 10.1038/s41577-020-00488-6.
  6. Xu S, Zhang G, Guo JF, Tan YH. Associations between osteoporosis and risk of periodontitis: a pooled analysis of observational studies. Oral Dis 2021;27:357-69. doi: 10.1111/odi.13531.
  7. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 2018;9:522-54. doi: 10.1080/21505594.2017.1313372.
  8. Sintim HO, Gursoy UK. Biofilms as "connectors" for oral and systems medicine: a new opportunity for biomarkers, molecular targets, and bacterial eradication. OMICS 2016;20:3-11. doi: 10.1089/omi.2015.0146.
  9. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 2003;11:94-100. doi: 10.1016/s0966-842x(02)00034-3.
  10. Stevens MR, Luo TL, Vornhagen J, Jakubovics NS, Gilsdorf JR, Marrs CF, Moretro T, Rickard AH. Coaggregation occurs between microorganisms isolated from different environments. FEMS Microbiol Ecol 2015;91:fiv123. doi: 10.1093/femsec/fiv123.
  11. Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun 1989;57:3204-9. doi: 10.1128/iai.57.10.3204-3209.1989.
  12. Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 1989;57:3194-203. doi: 10.1128/iai.57.10.3194-3203.1989.
  13. Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012;2:a012427. doi: 10.1101/cshperspect.a012427.
  14. Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci U S A 2003;100(Suppl 2):14549-54. doi: 10.1073/pnas.1934514100.
  15. James D, Shao H, Lamont RJ, Demuth DR. The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. Infect Immun 2006;74:4021-9. doi: 10.1128/IAI.01741-05.
  16. Jang YJ, Choi YJ, Lee SH, Jun HK, Choi BK. Autoinducer 2 of Fusobacterium nucleatum as a target molecule to inhibit biofilm formation of periodontopathogens. Arch Oral Biol 2013;58:17-27. doi: 10.1016/j.archoralbio.2012.04.016.
  17. Ryu EJ, Sim J, Sim J, Lee J, Choi BK. D-Galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens. J Microbiol 2016;54:632-7. doi: 10.1007/s12275-016-6345-8.
  18. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14:195-206. doi: 10.1016/j.chom.2013.07.012.
  19. Sakanaka A, Takeuchi H, Kuboniwa M, Amano A. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells. Microb Pathog 2016;94:42-7. doi: 10.1016/j.micpath.2015.10.003.
  20. Sharma A. Virulence mechanisms of Tannerella forsythia. Periodontol 2000 2010;54:106-16. doi: 10.1111/j.1600-0757.2009.00332.x.
  21. Sharma A, Inagaki S, Sigurdson W, Kuramitsu HK. Synergy between Tannerella forsythia and Fusobacterium nucleatum in biofilm formation. Oral Microbiol Immunol 2005;20:39-42. doi: 10.1111/j.1399-302X.2004.00175.x.
  22. Lee YJ, Baek DH. Inhibitory effect of pentose on biofilm formation by oral bacteria. Int J Oral Biol 2010;35:203-7.