• 제목/요약/키워드: backwash time

검색결과 34건 처리시간 0.026초

호소수 탁도변화 대응을 위한 고플럭스 막여과공정의 Pilot 연구 (A pilot study of high flux membrane process for responding to influent turbidity changes in reservoir water)

  • 강준석;성자영;유제완;김형수;이재규;전민혁;천지훈
    • 상하수도학회지
    • /
    • 제34권6호
    • /
    • pp.393-402
    • /
    • 2020
  • In the membrane process, it is important to improve water treatment efficiency to ensure water quality and minimize membrane fouling. In this study, a pilot study of membrane process using reservoir water was conducted for a long time to secure high flux operation technology capable of responding to influent turbidity changes. The raw water and DAF(Dissolved Air Flotation) treated water were used for influent water of membrane to analyze the effect of water quality on the TMP (Trans Membrane Pressure) and to optimize the membrane operation. When the membrane flux were operated at 70 LMH and 80 LMH under stable water quality conditions with an inlet turbidity of 10 NTU or less, the TMP increase rates were 0.28 and 0.24 kPa/d, respectively, with minor difference. When the membrane with high flux of 80 LMH was operated for a long time under inlet turbidity of 10 NTU or more, the TMP increase rate showed the maximum of 43.5 kPa/d. However, when the CEB(Chemically Enhanced Backwash) cycle was changed from 7 to 1 day, it was confirmed that the TMP increase rate was stable to 0.23 kPa/d. As a result of applying pre-treatment process(DAF) on unstability water quality conditions, it was confirmed that the TMP rise rates differed by 0.17 and 0.64 kPa/d according to the optimization of the coagulant injection. When combined with coagulation pretreatment, it was thought that the balance with the membrane process was more important than the emphasis on efficiency of the pretreatment process. It was considered that stable TMP can be maintained by optimizing the cleaning conditions when the stable or unstable water quality even in the high flux operation on membrane process.

호기성 침지형 생물막 여과장치를 이용한 오수처리 (Sewage Treatment using Aerated Submerged Biological Filter(ASBF))

  • 박종웅;송주석
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거 (Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System)

  • 최광수
    • 한국수산과학회지
    • /
    • 제40권2호
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 춘계 총회 및 학술발표회
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

막여과 정수장에서의 배출수처리시설 설계인자 평가 (Evaluation of Design Parameter on Residuals Treatment Facilities in Membrane Water Treatment Plants)

  • 문용택;서인석;김홍석;박노석;안효원
    • 상하수도학회지
    • /
    • 제20권1호
    • /
    • pp.138-146
    • /
    • 2006
  • The characteristics of backwash and concentrate discharges depend upon the quality of the water being treated and the net recovery of the membrane system. This paper is to indicate a design methods on the capacities of residuals treatment facilities in membrane processes for drinking water. We operated a demonstration membrane plant with a recovery rate of 90% for designing G-water treatment plant. We investigated on design parameter (optimum coagulant dosage and surface loading rate etc.) to design efficiently the residuals treatment facilities. The settling test was conducted with 1m columns dosing PACl to kaolin and membrane residuals under the experimental condition that discharge permit was under a 60mg/L. When the quantity of membrane residuals was $1,575m^3/day$, the estimated results for 1st thickener demonstrated the surface loading rate of 14.4m/day, detention time of 5.83hr, available depth of 3.5m.

여과지에서 여재 원형도 결정 방법에 대한 연구 (Integrated Method to Determine the Sphericity of Filter Media)

  • 정원석;최승일
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.565-571
    • /
    • 2005
  • The method to decide media sphericity on the filter has been investigated. The sphericity, the ratio of the surface area of an equal volume sphere to the real surface area of the particles, is one of major physical characters of media affecting the bed expansion during backwash. The media in each treatment plant may have different sphericity, and the sphericity of the media in the filter may be changed as backwashing has been conducted regularly for a long time. Media from twelve water treatment plants under KOWACO have been collected and selected to insure various and practical sphericities. The sphericity of each media has been calculated by using well known equations. For example, Kozeny equation, Dahmarajah equation and so on. The experiment results have indicated that the sphericity of each water treatment plant is different. Although the sphericity values measured by different methods were turned out to be diverse values, the order in the magnitude seemed to be the same. The sphericity values of sand media were in the range of 0.71-0.82 and those of anthracite were placed between 0.49 and 0.56 by the Dharmarajah equation.

입상활성탄 흡착지 운영에서 역세척 주기와 팽창률의 영향 평가 (Decision of Backwashing frequency and method on the GAC adsorber)

  • 채선하;조창현;이희대;왕창근
    • 상하수도학회지
    • /
    • 제24권6호
    • /
    • pp.753-762
    • /
    • 2010
  • The objective of this study was to evaluate the backwashing frequency and method on the Granular Activated Carbon (GAC) in G WTP. A backwashing period was determined as 50 days and 60 days, respectively. Prior to Backwashing by head loss build, biomass concentration in effluent as constant and DO concentration was maintained more than 11.5 mg/L in GAC bed. Peak turbidity of backwashing water was 73.6~303 NTU. Mean turbidity of backwashing water at initial 9 minute of backwash operation was 50.7~82.8 NTU. After 30 minute backwashing operation, final turbidity reaches approximately 10 NTU. The frequency of backwashing and turbidity of backwashing water overtime were evaluated. At 20days of backwashing frequency, the peak turbidity was 73 NTU and 42 NTU respectively when 10% and 25% of expansion of GAC were applied. At 14 minute of backwashing time, it was observed that turbidity of 10% expansion of GAC was higher than that of 20% expansion.

응집제와 관형막을 활용한 CMP 폐수 처리 가능성 연구 (The Feasibility Study of CMP Wastewater Treatment Using Tubular Membrane and Coagulants)

  • 정호찬;정철중;송자연;김연국;이선용
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.639-645
    • /
    • 2012
  • The purpose of this study is to identify the possibility of the CMP wastewater treatment from semiconductor fabrication under operating tubular membrane with coagulants. To find suitable coagulants treating CMP wastewater, we conducted Jar-test. After Jar-test experiments suitable coagulants are PAC(17%), $Ca(OH)_2$ and optimum coagulant dosage is PAC(17%) 10mg/L, $Ca(OH)_2$ 110 ~ 120mg/L. Based on these results, the tubular membrane was applied to CMP wastewater, the turbidity removal efficiency is $Ca(OH)_2$ > PAC(17%) > Nothing. The fast cross-flow velocity and backwash process what are operating characteristics of tubular membrane can be stable CMP wastewater treatment. But when the coagulant and tubular membrane are used at the same time, the withdraw and treatment of the CMP wastewater are possibile. However further treatment process needs if treated water will be used for semiconductor fabrications.

유전자알고리즘을 이용한 막오염 시계열 예측 연구 (A Study on Time Series Analysis of Membrane Fouling by using Genetic Algorithm in the Field Plant)

  • 이진숙;김준현;전용성;곽영주;이진효
    • 대한환경공학회지
    • /
    • 제38권8호
    • /
    • pp.444-451
    • /
    • 2016
  • 기존에는 lab-scale 연구에서 이론식을 기초로 막오염 모델식을 구성하였지만, 이러한 모델식은 여과, 역세, 배출이 연속적으로 이루어지는 실규모 현장에 적용하기에는 적합하지 않았다. 본 연구는 실제로 인천시 G-정수사업소에서 발생되는 배출수 처리를 위해 연속자동 운전되고 있는 침지막 공정을 대상으로 진행되었다. 정유량 조건에서 막오염 관리지표를 막간차압(Trans-Membrane Pressure, TMP)으로 결정하고 침지막 공정의 주요 운전변수인 총 투과유량과 조 내 SS농도를 독립변수로 하여 TMP의 시계열 예측을 시도하고 예측 가능성 및 적용성을 평가하였다. 유전자알고리즘을 이용한 시계열 예측모형을 구성한 결과, TMP 예측값이 펄스주기 형태와 경시적인 증가 추세 두 가지를 모두 반영하고 있어서 만족할 만한 결과가 나왔다. 두 번의 검증 결과, 선형회귀 방식으로 TMP 실측치와 예측치의 상관성(유의성)을 나타내면 각각 $r^2=0.721$, $r^2=0.928$ 수준이다. 본 연구에서는 하절기 자료를 활용하여 모델링 작업을 수행하였지만 추후에 연속자료가 더 쌓이면 같은 절차로 모델링 작업을 반복해서 더 높은 신뢰도의 예측모형을 구성할 수 있고 이를 실제 현장에 적용하여 2~3일 정도의 단기예측을 수행한다면 실제로 막공정을 에너지 효율적으로 운영하는데 도움이 될 것으로 사료된다.

MBR에서 간헐포기에 의한 오염저감 효과 (Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors)

  • 최영근;김현철;노수홍
    • 멤브레인
    • /
    • 제25권3호
    • /
    • pp.276-286
    • /
    • 2015
  • 30 LMH의 정유량 플럭스로 운전하는 MBR에서, 휴지 및 역세정에 따른 한외여과 분리막의 오염을 조사하였다. 또한, 연속적인 공기세정과 비교하여 분리막 여과저항을 최소화하기 위한 간헐적인 공기세정을 평가하였다. 여과 조건은 14.5분 여과와 0.5분의 휴지를 유지하였으며, 역세정 시간은 휴지 시간과 동일하게 운전하였다. 공기세정이 정지하는 동안에 분리막 표면의 겔층 위에 케?이 빠르게 축척되었으며, 역세정으로 겔층과 케?층의 복합층은 쉽게 제거되었다. 역세정 후에 공기세정이 정지하는 동안 분리막 표면에 케?이 형성되어 공경 내부의 오염현상을 억제하였다. Pearson 상관성을 조사한 결과, 간헐적인 공기세정에서 공기 세정이 정지하는 시간과 분리막의 오염은 매우 연관성이 높다는 것을 알았다. 즉, 간헐적인 세정에서 공기세정이 정지하는 시간이 갈수록 오염억제에 효과적이었다.