• Title/Summary/Keyword: backward prediction

Search Result 85, Processing Time 0.034 seconds

Application of the Backward Tracing Scheme of Finite Element Method to Tailored Blank Design and Welding Line Movement in Sheet Metal Forming (두께가 다른 두 용접판재 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적기법 적용)

  • 구태완;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.453-462
    • /
    • 2000
  • Tailor-welded blanks are used for forming of automobile structural skin components. The main objective of this study is to achieve weight and cost reduction in manufacturing of components. For successful application of tailor-welded blanks, design of initial welded blanks and prediction of the welding line movement are critical. The utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of the initial blank in forming of welded thick sheet with isotropy is tried, and it appears successful in obtaining a net-shape stamping product. Based on the first trial approach, the backward tracing scheme is applied to anisotropic tailored blanks. The welding line movement is also discussed.

  • PDF

Forward Adaptive Prediction on Modified Integer Transform Coefficients for Lossless Image Compression (무손실 영상 압축을 위한 변형된 정수 변환 계수에 대한 순방향 적응 예측 기법)

  • Kim, Hui-Gyeong;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1003-1008
    • /
    • 2013
  • This paper proposes a compression scheme based on the modified reversible integer transform (MRIT) and forward adaptive prediction for lossless image compression. JPEG XR is the newest image coding standard with high compression ratio and that composed of the Photo Core Transform (PCT) and backward adaptive prediction. To improve the efficiency and quality of compression, we substitutes the PCT and backward adaptive prediction for the modified reversible integer transform (MRIT) and forward adaptive prediction, respectively. Experimental results indicate that the proposed method are superior to the previous method of JPEG XR in terms of lossless compression efficiency and computational complexity.

Rectangular can backward extrusion analysis using FEM (FEM을 이용한 RECTANGULAR CAN 후방압출 해석)

  • 이상승;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

Serially Correlated Process Monitoring Using Forward and Backward Prediction Errors from Linear Prediction Lattice Filter

  • Choi, Sungwoon;Lee, Sanghoon
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.143-150
    • /
    • 1998
  • We propose an adaptive monitoring a, pp.oach for serially correlated data. This algorithm uses the adaptive linear prediction lattice filter (ALPLF) which makes it compute process parameters in real time and recursively update their estimates. It involves computation of the forward and backward prediction errors. CUSUM control charts are a, pp.ied to prediction errors simulaneously in both directions as an omnibus method for detecting changes in process parameters. Results of computer simulations demonstrate that the proposed adaptive monitoring a, pp.oach has great potentials for real-time industrial a, pp.ications, which vary frequently in their control environment.

  • PDF

ESTIMATION OF FREQUENCIES FROM MODIFIED LINEAR PREDICTION METHODS (변형된 선형 예측 방법으로 부터 주파수 측정)

  • Ahn, Tae-Chon;Park, Yong-Seo;Whang, Kuem-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.473-476
    • /
    • 1988
  • The problem of estimating the frequencies of multiple sinusoids from noisy measurements by using the modified linear prediction methods - Modified Forward-Backward Linear Prediction(MFBLP) and Model Reduction(MR) methods is addressed in this paper. The MFBLP and MR methods are derived by singular value decomposition and approximation of linear system. respectively. Monte Carlo simulations are done and the performances compared with linear prediction and forward-backward linear prediction. Simulations show a great promise for MFBLP and MR.

  • PDF

New Process Design of Open Backward Extrusion to reduce the Forming Load (성형 하중 저감을 위한 개방형 후방 압출의 신공정 설계)

  • 정덕진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.125-130
    • /
    • 1999
  • In order to reduce the forming load of backward extrusion to a feasible level a new backward extrusion processes are proposed. In these process the shape of punch and die for conventional backward extrusion are change to open backward extrusion. To analyse the process numerical simulations by the finite element method has been performed, This simulation gave good results concerning the prediction of the forming load material flow and the corresponding shape of forged products, . These predictions set the limits of the preform shape and forming load depending on the punch and die geometry. The results show that the forming load is reduced significantly when the conventional backward extrusion change to open backward extrusion.

  • PDF

Scene Change Detection Algorithm on Compressed Video

  • Choi Kum-Su;Moon Young-Deuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.442-446
    • /
    • 2004
  • This paper propose scene change detection algorithm using coefficient of forward prediction macro-block, backward prediction macro-block, and intra-coded macro-block on getting motion estimation. Proposed method detect scene change with correlation according picture type forward two picture or forward and backward two picture on video sequences. Proposed algorithm is high accuracy and can detect all scene change on video, and detect to occur scene change on P, B, I-picture.

  • PDF

Prediction of a Backward-Facing Step Flow with Modified Turbulence Models (수정 난류모델에 의한 후향계단 유동예측)

  • 명현국;백인철;한화택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

Application of the Backward Tracing Scheme of Finite Element Method for the Tailored Blank Design and Welding Line Movement in Sheet Metal Forming with Two Different Thickness (두께가 다른 두 용접관계 성형에 있어서 블랭크 설계 및 용접선 이동에 대한 유한요소법의 역추적 기법적용)

  • 최환호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.49-52
    • /
    • 1999
  • Tailored-welded blanks are used for forming of automobile structural and skin components. Its main objective is to achieve weight and production cost reduction in manufacturing of the components. For successful application of tailored-welded blanks design of initial welded blanks and prediction of welding line movement are critical. Here the utilization of the backward tracing scheme of the finite element method shows to be desirable in design of initial welded blanks for net-shape production and in prediction of the welding line movement. First the design of initial blank in forming of welded thick sheet with isotropy is tried and it appears successful in obtaining a net-shape stamping product. Based in the first approach the backward tracing scheme is applied to anisotropic tailored blank. The welding line movement is also discussed.

  • PDF

A STUDY ON THE IMPROVEMENT OF κ-εTURBULENCE MODEL FOR PREDICTION OF THE RECIRCULATION FLOW (재순환유동 예측을 위한 κ-ε 난류모델 개선에 대한 연구)

  • Lee, Y.M.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.12-24
    • /
    • 2016
  • The standard ${\kappa}-{\varepsilon}$ and realizable ${\kappa}-{\varepsilon}$ models are adopted to improve the prediction performance on the recirculating flow. In this paper, the backward facing step flows are used to assess the prediction performance of the recirculation zone. The model constants of turbulence model are obtained by the experimental results and they have a different value according to the flow. In the case of an isotropic flow situation, decaying of turbulent kinetic energy should follow a power law behavior. In accordance with the power law, the coefficients for the dissipation rate of turbulent kinetic energy are not universal. Also, the other coefficients as well as the dissipation coefficient are not constant. As a result, a suitable coefficients can be varied according to each of the flow. The changes of flow over the backward facing step in accordance with model constants of the ${\kappa}-{\varepsilon}$ models show that the reattachment length is dependent on the growth rate(${\lambda}$) and the ${\kappa}-{\varepsilon}$ models can be improved the prediction performance by changing the model constants about the recirculating flow. In addition, it was investigated for the curvature correction effect of the ${\kappa}-{\varepsilon}$ models in the recirculating flow. Overall, the curvature corrected ${\kappa}-{\varepsilon}$ models showed an excellent prediction performance.