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Serially Correlated Process Monitoring Using
Forward and Backward Prediction Errors from
Linear Prediction Lattice Filter

Sungwoon Choi - Sanghoon Lee
Dept. of Industrial Engineering, Kyung Won University

Abstract

We propose an adaptive monitoring approach for serially correlated data. This
algorithm uses the adaptive linear prediction lattice filter (ALPLF) which makes it
compute process parameters in real time and recursively update their estimates. It
involves computation of the forward and backward prediction errors. CUSUM
control charts are applied to prediction errors simultaneously in both directions as
an omnibus method for detecting changes in process parameters. Results of
computer simulations demonstrate that the proposed adaptive monitoring approach
has great potentials for real-time industrial applications, which vary frequently in
their control environment.

1. Introduction

Statistical process control (SPC) techniques have been widely applied in industry
for process improvement and for estimating parameters or monitoring variability of
a given process. In the typical application of the SPC charts, it is traditionally
assumed that the observations are uncorrelated. However, this assumption is
generally invalid in many industrial processes. The presence of autocorrelation in
the processes gives a profound effect on control charts developed for identically
and independently distributed (IID) observations, thereby resulting in increasing the
frequency of false signals. Approaches for dealing with autocorrelated data in the
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SPC environment have been developed by fitting an appropriate time series model
to the observations and applying control charts to the stream of residuals from
this model. These methods are based on the assumption that the residuals are
white noise when there is no special cause in the process and can then utilize any
of the conventional tools for SPC. Alwan and Roberts [1] proposed two separate
charts to monitor the process: common-cause chart and special-cause chart. The
common cause chart is a plot of fitted values using the autoregressive integrated
moving average (ARIMA) model and provides information on the systematic
variation of the process. The special cause chart i1s to apply a conventional
Shewhart chart to the residuals. English et al. [2] proposed a similar approach
using the forecasted errors from Kalman filtering to monitor a continuous flow
process.

Lee and Choi [3] presented a control chart scheme for continuous flow
processes, which employes the adaptive linear prediction lattice filter (ALPLF) [4].
The filter is designed for adaptive prediction of time series as an on-line process
by computing the predictor coefficients from the correlation sequence of the
process. It involves computation of the forward and backward prediction errors.
The scale CUSUM procedure, which was introduced by Hawkins [5] for
controlling the variance for IID normal processes, was used to detect changes in
serial correlation parameters. The control chart was applied to the forward
prediction errors which are recursively obtained by the ALPLF. This study
extends the ALPLF scheme to use the prediction errors in both directions for SPC
and investigates performance of the adaptive chart for various cases of the change
in the process mean.

2. Adaptive Linear Prediction Lattice Filter

A serially-correlated processes {y(f#)} can be modeled with a discrete AR

zero-mean time series of order n if the process mean is known:

W)= — 3 APy(t— i)+ e(8)

i=1

where A,-(")is the ith AR coefficient and &(#)~N(0, ¢®). The forward linear

predictor and prediction error of the pth order are then written:
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P
¥ (t) == 2D APy(t—1)

i=1
e,(t) = y(#)— »,(¢)
and the backward predictors and prediction error are also defined:
yy(t—p—1) 2—238—i+1) y(t—1)
i=1

r{t—=1) = y(t—p—1) — y,(t—p—1)

eo(t) el(t)

(1) —» e,(1)

—p-7,(1)

< Figure 1 > Linear Prediction Lattice Filter

where 1<p=<n. The coefficients of the optimal predictor are uniquely determined
by the second order statistics of the process, the autocorrelation coefficients { R;}
where R;= E[y(t)y(t—i)]. Given the second order statistics by the forward and
backward mean-square errors, that is, Rj=E[&}(¢)] and R;=E[7(t—1)], the
predictor coefficients can be efficiently computed from the correlation sequence of
the process using the Levinson algorithm [4]. <Figure 1> outlines the ALPLF
algorithm. The transfer function of the lattice filter in Figure 1 is determined by

the values of the parameters {K,} which are referred to as reflection coefficients:
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s+1 = Eleyyr,(t—1)1/R;
Kyo1 =Eleyyr(t—DI/R;

The reflection coefficients are determined by the autocorrelation sequence {R,;} as

a cross correlation of the forward and backward prediction errors.

3. Adaptive Process Monitoring

Fitting of the AR model makes it possible by study of its residuals to isolate
the departures from control that may be traceable to special causes. If the
adaptive filter estimates the appropriate model, the sequence of prediction errors
from the filter will then behave as white noise. Therefore, conventional control
charts can be applied to the stream of the prediction errors.

If z2,~N(0,1), then Iz,Il/2 closely approximates an N(.822, .349?%) distribution,

and that changes in the scale of z, affect the location of Iztll/ 2. Based on this

fact, CUSUM control of location and scale parameters was suggested by Hawkins
[5]. This study extended the Hawkins’ CUSUM scheme to use the forward and

backward prediction errors generated from ALPLF. Let e, and #; be the forward

and backward errors from the ALPLF at time ¢ respectively, the CUSUM can be
operated for a given reference value k by forming the cumulative sums as the
followings:

wt =(|ef] *—0.822)/0.349, w; =(|7]"*—0.822)/0.349

Ly =max{0,L;, +e,—k, L, =min{0,L,,te+k

L), =max{0,L}, \+7»—4&, L, =min{0,L,,-,+7r+k.

s =max{0,S),_,+wi—#, S =min {0,S, -+ witk

S}, = max{0,S7, 1 +w/—#, S, =min{0,S, -+ wi+k}
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The CUSUMs {L;} and {L;} test for shifts in process mean in the upward and

downward directions, respectively. The CUSUMs {S;} and {S;} test for shifts in

variability in the upward and downward directions, respectively. For a sequence of
prediction errors, {e;, 7;}, given control limits 4, for mean shift and 4, for

variance shift, the control chart signals an out-of-control condition against shifts .
in location and scale parameters of the process when

MCX, =max{L},L,}, MCX, =max{L},L,}
VCX, = max{S},S»}, VCX, = max{S}, Sy}

MCXp = max {MCX, MCX,} > h,,
VCXjp = max{VCX,, VCX,} > h,

The VCX. and VCX, are the scale CUSUM (SCUSUM) charts, which were
proposed by Hawkins [6], using the forward prediction errors and the backward
prediction errors of the ALPLF respectively.

4. Experiments

In this section, we considered a sequence of IID standard normal data for the
target process and all the results were obtained by 10,000 Monte Carlo simulation
runs. For each case, we simulated 10,000 independent data series by Monte Carlo
method and each average run length (ARL) was computed by averaging the run
lengths of the applied control scheme for these 10,000 series. Serially correlated
data were generated using the first order AR model described in Section 2. We

chose the reference values, k = 05 for {L,} and k = 025 for {S,} as used in
Hawkins [5][6]. First, we applied the SCUSUM chart to IID standard normal data

with no perturbation in error variance, that is, *=1. The SCUSUM has an ARL
of approximately 200 when using and h = 6.8460. Using A = 0.6840 and k& = 0.25,
we applied the SCUSUM scheme to the simulated sequences of IID normal data
with various perturbations of process. The ARL results are shown in <Table 1>.
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< Table 1 > ARLs according to perturbation in error variance ba

Perturbation | SCUSUM VCX., VCX,
in o p=01| 0=0| p=05|p=05 p=0]| p0=05|p=-05
-50% 16 16 16 16 15 15 15
-40% 2% 24 2% 24 22 23 23
~30% 39 4 40 40 37 38 38
-20% 77 77 i 7 74 7 76
-10% 162 162 161 162 158 162 162
0 200 203 202 202 202 202 202
10% 111 115 114 115 17 115 114
20% 58 61 61 61 62 61 62
30% 37 39 38 38 40 39 40
40% % 27 27 27 2% % %8
50% 20 21 21 21 22 2 2

<Table 1> also contains the results when the SCUSUM scheme was applied to
the prediction errors generated from the ALPLF of the first order for six
simulation series with the serial correlations of g = 0, 0.5 and -0.5 respectively.
After initiating the ALPLF for 200 steps by initially setting the first order
coefficient to an arbitrary value of 0.1, we started to apply the chart to the
prediction errors. The results of adaptive approach for serially correlated data are
almost same with the direct application of the SCUSUM for IID normal data. It
indicates that the prediction errors from the ALPLF are IID normal. Next, the
SCUSUM was applied to the prediction errors from the ALPLF for the simulated
sequences, which were changed in noise variance and serial correlation after 200
time steps from IID standard normal data. <Table 2> shows the ARLs for
detecting a change in variability of the process. The chart schemes VCX. and
VCXp used h, = 6814 and 6.959 corresponding to in-control ARL = 200

respectively. When the data change to the positive relation of serially-correlated
processes or reversely, to the negative, the detecting performance of the adaptive
scheme is almost invariable if the absolute levels are same. The VCXp scheme
using the prediction errors in both directions shows better performance in ARL for
relatively small changes in process variation than one using only the forward
prediction error. Next, the MCX scheme was applied to the simulated data series
which change from IID normal data to serially-correlated data with various shifts
in process mean at the 201th time step. <Table 3> illustrates the ARL results
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with k = 05. We used the control limits 4, = 4.224 and 6.662 for MCX. and

MCX3p, which result in ARL = 200 for in—control processes. The ARL performance
of the MCX scheme using the forward prediction error is better than when using
the prediction errors in both directions. The control limit of MCXg for in—control

ARL = 200 has a relatively larger value than that of MCX.

give slower signal when the process mean is shifted from the target.

It makes the chart

< Table 2 > ARLs of signaling out-of-control from change-point when IID standard
normal data change to serially-correlated processes with various

perturbation in ¢ after 200 time steps.

Perturbation VX, VEXs
w2 el ||| o=| o=| = | o= | o= | p=| 0| 0"
075 | 05 | 025 1-025| -05|-0.75| 0.75 0.5 025 {-0.25, -0.5 [-0.75

-50% 31 21 17 17 20 30 30 20 16 15 19 28
~-40% 4 33 26 25 32 43 42 31 24 23 29 41
-30% 51 57 44 42 55 53 48 5 41 39 50 50
-20% 44 9% & &2 B 50 43 89 &0 76 35 48
-10% 34 123 | 160 | 161 | 132 38 33 109 149 144 | 113 37
0 24 83 170 | 180 b 27 25 76 156 159 32 27
10% 19 45 91 97 51 21 19 44 8 91 48 21
20% 16 30 50 53 33 17 16 30 50 51 31 17
30% 14 22 33 A 23 14 14 22 33 A 23 14
40% 12 18 24 25 19 12 12 18 24 25 18 12
50% 11 14 19 19 15 11 11 15 19 19 15 11

< Table 3 > ARL results of signaling out-of-control from change-point when IID
normal data change into serially-correlated processes with various
shifts in mean.

MCX, MCXp
Mean Shift
o= 0.75 o= 05 o= 0.25 o= 0.75 0= 05 o= 025
05 12 18 24 18 26 29
10 11 10 94 15 14 13
15 38 6.8 56 12 9.1 8.0
20 74 50 40 94 6.8 57
25 6.2 41 32 79 55 45
30 54 34 27 6.8 46 38
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5. Conclusions

This paper presented an adaptive monitoring approach for the detection of
changes in variability in IID normal processes by serial correlation with mean shift
and noise variance perturbation. This scheme employs the adaptive linear
prediction lattice filter and CUSUM control charts. Although the lattice filter is
conceptually easy, its implementation is quite simple and the algorithm is
computationally efficient to eliminate the systematic pattern and generate white
noise prediction error. In our experiments, the proposed scheme demonstrates a
good prospect of monitoring both common and special causes simultaneously.
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