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ABSTRACT

The problem of estimating the frequencies
of multiple sinusoids from noisy measure-
ments by using the modified linear predic-
tion methods - Modified Forward-Backward
Linear Prediction(MFBLP) and Model Reduc-
tion(MR) methods is addressed in this pa-
per. The MFBLP and MR methods are derived
by singular value decomposition.and appr-
oximation of linear system, respectively.
Monte Carlo simulations are done and the
performances compared with linear predic-
tion and forward-backward linear predic-

tion, Simulations show & great promise for
MFBLP and MR,

I.Introduction
Estimation of spectrum from finite noisy
measurements is a very interesting and

practical problem. It has been studied
and used in many fields. such as communi-
cations., control systems., geophysics and
econometrics, With the rapid development
of modern technology, the need for esti-
mation of spectra becomes ever Increasing.,
and therfore motivates more and more re-
searchers on this issue.

In this paper we are mainly interested in
estimation of multiple sinusoidal frequ-
encies. or narrow-banded spectral estima-
tion in its broad sense., from finite
noisy data, using the linear prediction.

Unlike the Yule-Walker method which in-
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volves the covariance function, the linear
prediction method uses the measured data
directly. Without taking approximation of
covariance function for finite data, the
linear prediction method may be expected
to give better results for very short data
cases.

Especially, we derive the modified linear
prediction methods from the forward-back-
ward linear prediction and linear predic-
tion by using the singular value decompo-
sition and approximation of linear system,

respectively. Monte carlo simulations are
done and the performances compared with

linear prediction and forward-backward li-
near prediction,

2.Problem Formulation
Consider the following sinusoidal signal

m
x{t) = ¢ c‘isin(miu ©.) (2.1)
t=1 1

wWeRWe

where and “i*%5 for 1=
Let y(t) denocte the noise-corrupted measu-
rements of x(t)

Gi’ lP‘GR' wie(ov'ﬂ)

y{t) = x(t)+e(t) (2.2)

where e(t) 1s a sequence of independent
and identically distributed random variable

of zero mean and variance o‘ﬁ It is assumed

that x(t) and e(s) are uncorrelated for
any t and s.

As is well-known, x(t) obeys the following
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autoregressive(AR) process or (3.1b)
AleDx(t) = 0 (2.32) y{t) = epy(t-1)=c,y(t=2)=...-c y(t-L)+n (t)

where g denotes the unit delay operator
and A(q*) is a polynomial of degree 2m
defined by (2.3b)

A(q") = 1+a1q'1+... -2y

= n1(1 -2cosw;q 1+q
i=

It follows from (2.2) and (2.3) that y(t)

obeys the following autoregressive moving

average(ARMA) process

-2m
+a2mq

AQ y(t) = AGg™N)e(e) (2.4)

It is easy to show that the roots of A(Z)
appear on the unit circle at e},i=1,2..m,
Next multiplying both sides of equation
(2.4) by a nonzero polynomial in q”,say
B(g'), we obtain

c(a Ny(t) = cla Del(t) (2.5a)
where
cte™) = 8(g"Hae™h) (2.5b)

Throughout the paper it will be assumed

that C(q') is a polynomial degree L(L>2m)
given by
-1 -1 L
Clg ') = cy*cqq '+.ovci g (2.5¢)

The problem is to estimate the augular
frequencies (w;) from the available data
y(1), ¥y(2),....y(N),
The frequency estimates are usually obta-
ined from the following two-step procedure:
1. Estimate the coefficients [c;].
2. Find the frequency estimates [w;] either
from the angular positions of 2m largest
modulus roots,

+jw,

°ie

of C(z) or from those 2m values at which
the spectrum 1/0CCe )2 reaches its lar-
gest peaks,

(i=1,2,...,m)

3.MFBLP and MR Methods
It is a simple matter and a natural way
to apply the noisy data y(1), y(2).....y(N)
to (2.4) or (2.,5).In the following (2.5)
will be considered.
For convenience, we rewrite (2.5) into

ctahiy(t) = ne(t) (3.1a)

This is a high-order autoregressive model,
One immediately thinks of the least squares .
(LS) method in order to estimate c;. Equ-
etion (3.1) can also be explained as a li-
near prediction filter problem, hence the
name linear prediction method. Let y(t) be
one-step “forward” linear predictor at time

t, given a set of past values of y(t), This
gives for the model (3.1)
¥(t) = —cy(t-1)-coy(t-2)-...¢, ¥(t-L)  (3.2)

Thus ng(t) in (3.1) is intrepreted as the
linear prediction error, For finite data

it is straightforward to write (3.1) into
the following form,

Yf = -Afe+Nf (3.3a)
where
Y = [y(Le1) y(1e2) ... y(N))T (3.3b)
y(L) y(L-1). . .y(1)
y(Lel) - y(L) < . . y(2)
- : . : (3.3¢)
Af- . - -
y(N-1) y(N-2) y(N-L)
o = T
= [c1 € oo cL] (3.3d)
Ny = (nf(L+1)nf(L+2)...nf(N)]T (3.3e)
The estimate of 8 is then given by
= -A;Yf (3.4)

where Af is the Moore- Pseudoinverse of A
If Ag is of rank L, then Aj=(AjA;) N

The fllter 1/€(g™) so obtained is called
the forward linear prediction filter. Eqg-
uations (3.2) and (3.4) will be called the
forward linear prediction method, or rather
the linear prediction(LP) method,

One may notice that when we made a linear
prediction estimator in (3.2), some infor-
mation is lost. More clearly., the predictor
y(t) in (3.2) cannot be made for tsL in the
forward linear prediction. This information
can be restored if the predictor is perfor-
med in the "backward” direction, namely.,

if backward linear prediction is used. This
idea was first introduced in maximum entr-
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opy method by Burg » who used it in a
Levinson recursion algorithm, Ullrych and
Clayton used the same idea in the li-
near prediction case. Under the condition
that the covariance function is symmetric
for a real-valued process., we can write

the model in the “backward” form: (3.5)

yit) = -cly(t+1)-c2y(t+2)-...-cLy(t+L)+nb(t)

Comvining (3.2) with (3.5), we obtain the
following forward-backward linear predl-

tion(FBLP) method:

Yoo = “Apy 8 gy (3.6a)
where
Yep * [V(L41) oo wN) y(1) .. y(N-U1T (3,600
[yl yl=1} . . . y(1y
y(N-1) ~ y(N-2) . . . y(N-L) {3.6c)
Agp =
y(2} y(3) 11529
Ly("l'\.*'l) y{N-L+2) . . .y(N)
4 (3.6d)
= [np(L41) oo mg(N) mg(1) oo mp(N-L)]T

Thus the estimate of 8 is given by

CRROAN a.n

Equation (3.7) is expected to provide be-

tter performance than (3.4) for short data
sets., since more information is used.

3.1 WFBLP

Further irrproverent on the accuracy of the estimate
8 can be made by modifyingAg in some way, To give
a {ull analysis, we Sm\}'ed some results from singular

decamOSItl
Perform the SVD on Ay
Afb E UtVT (3.8)

where U and V are 2(N-L)x2(N-L) and LxL orthogonal
matrices, resoectxvely Uisan eigenvector magrix

of evis gervector matrix of A
zisa dlagmal matrix 0% dimension 2(N~L)>d_ w?@h
non-negative diagonal elements arranged in descend-
ing orcer, 1.e.

L= diag(ol,az. -1 } °12°22--'2°q (3.9)
mere q#mn(Z(N~L),L)

f rak (Ap)= (rsq). we have r nonzero gingular
values In this case the pseudoinverse Ai is given

+
Afb = 121v1u1/°$ (3.10}

and v; denote the {:th colum of U and V.,
resx)ecti ly.

It is known that for noiseless data, i.e. y(t)=x(1)
he rark of As 1S equal to 2m (m being the nurber of

miiusozds) This co*resomdstto am nonzerg smgular

values. For noisy measurements, hoae\ger

erally of full rank, Thus we have “5

(a~2m) small nonzero sinwfa' %/alues

caused by noise. It has been shown i that the

first 2m singular values and assoclated eigen-

vectors are not much perturbed by the nojse. Hence

we may set the last (q-Zn) “noise” singular values

to zero. Consecuently, have

Ay = zZ L ‘v1 3.11)

This is called the truncated singular value decompo-
sition, It can be shown that (3.11) is the best
enoroxzmatlon (in the sense of 2-horm) to the noise
perturbed natnx Awin (3.6) among all matrices with
rak 2n 3. 113 the pseudoinverse is now app-
oxzmated by
2m
Afb = : v‘u‘/o1

This ldea was first 1ntroduced Tufts and Kumar-
, vho called it a modified forwa‘d-backward
redictwn method. The important step
% s to use the truncated SVD. By
settln the noise s}ngu ar values to zero,
part of the noise effect is cancelled, Fur-
thermore, an 111-condifioned problem is avo-
%geg s(i:rf}ce We §et small singular values to

3.2 MR
Now we have got a high-order AR model from LP
based methods
his hlgh orger AR model m%y be r duced fo a
ow-order mo e, whlch con ? n
icant inf orma ionint nal mod
The reduced order model can be achieved by
mode] reduction(MR) technzques Note that MR
techniques are very impor ant %n the systiem
design, for example, in simplifying the sy-
stem models and high- order reguylators, Her?
we are onlg interested in getfing a minima
order (ARMA} model.We u(rji 111 brditﬁ:ftliyondias[JCDLll’SOSaC
nced model re
%gecﬁ}éﬁd baégr AR model can be written in

the state-space from:
x(t+1) = Fx{t)+Gn(t)

(3.12)

resan
llnear
1n MFB

(3.13a)

y(t) = Hx(t)*Dﬂ(t)

s G, HeR® and DeR

%Rgrﬁaln zdea of this agproach is to 1ntr9-
duce measures of reachability and observ ol
ability. The "most” reachab ie and Observg e
part 0¥ the model is taken as the reduce
order model, 6 ians

piltty and observabillt ram B
Thgngeaehgf an %symntot}ca ly stable mode
are defined, resoective y, by

pe trkal(rDk
k=0

Q= B )KThek (3.18b)

P anS‘% satisfy the well-known Lyapunov eq-
yations .
FPF TopsG' = 0, F QF-Q*H H=0 (3.15 )

1milar1ty transformation S(i.e,
ing&gdgﬁghatgat the Gramians are diagonal:

GssToste L, {3.16 )

{3:13b)

(3.14a)

—SPS 5311
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Since P and Q are non-negative definite,
the diagonal elements of % and Z.are non-
negative, The 1:th singular values of the
model (3.13) are defined by (3.17)
oy = /eig(PQ) = /eig(PQ), 920,20,

1=72=

wher% elg(.) means taking eigenvalues of

a matrix,

The order of the reduced model can be
choson by examlnin? the size of the sing-
ular values. Usually the first few singular
values, which are associated with the
signal, are much large than the rest.These
largest singular values correspond tgo the
most reachable and observable part of the
high-order model. Therefore the gaps bet-

ween the singular values give & good indi-

cation for determining the order of the

reduced model, )

once a minimal order (ARMA) model is ob-

tained from m?del reduction technique,
_the problem of estimating frequencies of

trivial, cf section 2, .

4,Simulation Examples
In thig section, simulation examples are
given for frequency estimation performances
of a sinusoids-in-nolse process, usin% the
methods developed in the previous sections,
In all the e¥amples, the signal was assumed
to consist of two sinusolds. various cases
were investigated.

Example 4.1 (short data, widely separated
frequencies)
The data we simulated is given by

y(t) = /Z8in(0.7226t)+/Tsin(1.0367t)+e(t) (4.1)

where e(t) is a zero mean white Gaussian
process, The data length is N=64, and the
SNR 1s 10 dB, i.e. SNR =SNR =10dB. We have
used 50 different noise realizations and
comnuted the frequencv estimates for a
number of "design parameters” like L.

The following quantities have been e-
valuated (for i=1,2) in all the examples

= o1 30

w, * Ej‘:’lﬁq (mean value of &1)
ms(:ai) = v/m_sT(E.i) (root mean square of w,)
where

mse(o,) = 4 0.2 o)
se(w,) ﬁjfl(ui-ui) (mean square error of wy

'31' ”1|
94

5(;1) - (percentage bias of Cxi)

Results for the approximately “best” design
parameters are given in table4.l, For eac
method, the gpectrum for_one realization
1s shown in figure 4.1, The angular posi-
tions of frequency estimates for 50 real-

izations are illustrated in figure 4,2,

Example 4,2 (short data, closely spaced
encies)

requ
The data is taken from the following process:

y(t) = vZsin{0.7226t)+/Zsin(0.8168t)+e(t) (4.2)

t) is Gaussian white noise of zerg
HQSEeaSé variancec§=0.01{ the data lenth is
64,and 50 noise realizations are used, the
performances are summarized in table 4.2.

5, Conclusions
Estimation of frequencies from short data
was studied, Simulation examples were pre-
sented for the data based methods. The fo-

drawn;
1) The MFBLP estimates are better than the
LP_and FBLP estimates.
2).By further increasing L in LP based me-
thods, the "bad” estimates appear more
often in the LP method than in the FBLP
and MFBLP methods.
3).The MR method gets rid of the extraneous
poles of the LP, FBLP and MFBLP.
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method s Y reali,) resliy) o) HEy)
0.0005%
0.00047
0.9001%

0.0003S
0.00028
9.00010
0.00038

(R3]
Le2s
L3
L=18

0.0027
0.0027
0.002%
9.002¢

¢.0026
0.0023
0.0020
0.0026

4 0.7222 1.0371
FaLP 0.7229 1.036¢
W 0.7227 1.0387
m 0.7221 10311

Table 4,1 Estimation performances.
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Figure 4.1 Normalized spectral densities
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Figure 4.2 Angular positions pf estimates
»etnod :l ;z m(il) r-(-‘.zl “"‘l’ ‘(&z) :::2:‘"

i» ©.7232 0.B186 0.004] ©.0041 0.00088 0.00216 Le36

FaLP 0.7227 0.8170 0.0028 0.002¢ 0.00015 0.00020 1e25

HRLP 0.7227 0.B169 0.0020 0.001% 0.00013 D.00008 L0

L3 0.7232 0.8186 0.0041 0.0041 0.00083 0.00217 L=36

Table 4,2 Estimation performances
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