• Title/Summary/Keyword: backward

Search Result 2,442, Processing Time 0.027 seconds

Study on the Forward-sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서에 대한 연구)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han;Choi, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.25-29
    • /
    • 2006
  • Computational and experimental studies on the forward-sweep inducer for the rocket-engine turbopump are presented in comparison with the conventional backward-sweep inducer. Computational results show that back flows at the inlet decrease in the case of forward-sweep inducers compared to the back-ward inducer. Moreover, the low pressure region at the back flow is decreased, which is presumed to improve the suction performance of the inducers. Experimental results show that the suction performance of the forward-sweep inducer is almost the same as that of the backward-sweep inducer although it has smaller inlet tip diameter and shorter length. The efficiency of the forward-type inducer is found better than that of the backward-sweep inducer due to the small size of back flows.

SOLVABILITY OF GENERAL BACKWARD STOCHASTIC VOLTERRA INTEGRAL EQUATIONS

  • Shi, Yufeng;Wang, Tianxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1301-1321
    • /
    • 2012
  • In this paper we study the unique solvability of backward stochastic Volterra integral equations (BSVIEs in short), in terms of both the adapted M-solutions introduced in [19] and the adapted solutions via a new method. A general existence and uniqueness of adapted M-solutions is proved under non-Lipschitz conditions by virtue of a briefer argument than the ones in [13] and [19], which modifies and extends the results in [13] and [19] respectively. For the adapted solutions, the unique solvability of BSVIEs under more general stochastic non-Lipschitz conditions is shown, which improves and generalizes the results in [7], [14] and [15].

Prediction of a Backward-Facing Step Flow with Modified Turbulence Models (수정 난류모델에 의한 후향계단 유동예측)

  • 명현국;백인철;한화택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3039-3045
    • /
    • 1994
  • The k-$\varepsilon$ turbulence models by Launder et al.(1977, LPS) and Leschziner and Rodi(1981, LR) are modified to account for the secondary straining effect with having a generality in the present paper. The modified models are obtained by replacing the gradient Richardson number used to account for the secondary straining effect in the original models by a new parameter with a tensor-invariant correction form. These two modified models are used to predict the turbulent flow over a backward-facing step. In contrast to both standard and modified LR models, the modified LPS model is found to predict the reattachment point fairy well, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds shear stress in the recirculating region.

Comparison of Lower Limb Muscle Activity According to Different Gait Pattern and Speed on the Treadmill (트레드밀 전·후방 보행과 속도에 따른 다리근육의 근활성도 비교)

  • Choi, Seok-Hwa;Chun, Hye-Lim;Lee, Cu-Rie
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2018
  • Purpose: This study is to compare muscle activation of leg muscles with forward and backward gait and treadmill speed. Method: The experimenter is a healthy ten male and female. They practice walking on the treadmill for 2 minutes and then walk 2km/h and 4km/h in front and back for 3 minutes. Muscle activities were recorded from the lower limb muscles (rectus femoris [RF], biceps femoris [BF], gastrucnemius [GCM]). Results: According to the study, lower extremity muscles have higher backward gait than forward gait. Conclusion: Muscle activity at the speed indicated that the muscular activity of the lower limbs was 4.0km/h, which is higher than 2.0km/h.

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF

INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF BACKWARD STOCHASTIC DELAY DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Liang, Hong;Zhou, Jianjun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.311-330
    • /
    • 2020
  • This paper investigates infinite horizon optimal control problems driven by a class of backward stochastic delay differential equations in Hilbert spaces. We first obtain a prior estimate for the solutions of state equations, by which the existence and uniqueness results are proved. Meanwhile, necessary and sufficient conditions for optimal control problems on an infinite horizon are derived by introducing time-advanced stochastic differential equations as adjoint equations. Finally, the theoretical results are applied to a linear-quadratic control problem.

A Study on Mixed Convection Heat Transfer in Duct Flow behind a Backward-Facing Step by Using Schlieren Interferometer (쉴리렌 간섭계에 의한 사각덕트내 후향계단후 유동에서의 혼합대류 전열에 관한 연구)

  • Baek, B.J.;Pak, B.C.;Kim, J.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • The flow and heat transfer characteristics behind a backward facing step located in a vertical channel has been studied. In this study, the numerical prediction has been performed by solving the Navier-Stokes equation and energy equation simultaneously with the SIMPLE algorithm embedied in TEACH code. Local heat flux was measured by using Schlieren Interferometer. The flow visualization was performed using the cylindrical lens and the laser beam that is scattered by the supplied glycerine particles. The velocity and temperature distributions, recirculation region, reattachment length, and local heat flux are obtained under the various parameters to investigate the buoyancy effect on the flow and heat transfer characteristics behind the step.

  • PDF

Material Flow and Surface Expansion in Radial-Backward Extrusion (레이디얼 압출과 연계된 후방압출의 소재유동과 표면확장)

  • 고병두;최호준;장동환;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. The paper discusses the influences of tool geometry such as punch nose angle, relative gap height, die comer radius on material flow and surface expansion into can and flange region. To analyze the process, numerical simulations by the FEM and experiment, an Al alloy as a model material have been performed. Based on the results, the influence of design parameters on the distribution of divided material flow and surface expansion are obtained.

COMBINED FORWARD-BACKWARD EXTRUSION WITH CONTROLLED REVERSAL RAM MOTION -Effect of Reversal Ram Motion-

  • Hanami S.;Matsumoto R.;Otsu M.;Osakada K.;Hayashida D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.162-166
    • /
    • 2003
  • In combined forward-backward extrusion with controlled forward speed by a counter punch, accurate parts with forward rod can be formed. As an extension of this method, reverse extrusion is proposed, in which the extruded forward rod is pushed back while the main punch is kept at the final position after the forward-backward extrusion process. The experiment is carried out using lead as a model material. With the reverse extrusion method, longer forward rods can be formed without under-filling defect than that by combined extrusion with controlling extrusion speed.

  • PDF

Optimal Design of the Punch Shape for a Housing Lower (펀치 형상에 따른 Housing Lower 최적 공정 설계)

  • Park, S.J.;Park, M.C.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.332-339
    • /
    • 2015
  • In the current paper, a cold forging sequence was developed to manufacture a precisely cold forged H/Lower, which is used as the air back unit in commercial automobiles. The preform shape of the H/Lower influences the dimensional accuracy and stiffness of the final product. The shape factor (SF) ratio and shape of the tools are considered as the design parameters to achieve adequate backward extrusion height and maintain appropriate thickness variations. The optimal conditions of the design parameters were determined by using an artificial neural network (ANN). To experimentally verify the optimal preform and tool shapes, the experiments of the backward extrusion of the H/Lower were executed. The process design methodology proposed in the current paper, can provide a more systematic and economically feasible means for designing the preform and tool shapes for cold forging.