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SOLVABILITY OF GENERAL BACKWARD STOCHASTIC

VOLTERRA INTEGRAL EQUATIONS

Yufeng Shi and Tianxiao Wang

Abstract. In this paper we study the unique solvability of backward
stochastic Volterra integral equations (BSVIEs in short), in terms of both
the adapted M-solutions introduced in [19] and the adapted solutions
via a new method. A general existence and uniqueness of adapted M-
solutions is proved under non-Lipschitz conditions by virtue of a briefer
argument than the ones in [13] and [19], which modifies and extends
the results in [13] and [19] respectively. For the adapted solutions, the
unique solvability of BSVIEs under more general stochastic non-Lipschitz

conditions is shown, which improves and generalizes the results in [7], [14]
and [15].

1. Introduction

Let {Wt}t∈[0,T ] be a d-dimensional Wiener process defined on a complete
probability space (Ω,F , P ) and lF ≡ {Ft} denote the natural filtration of {Wt},
such that F0 contains all P -null sets of F . This paper is motivated by the
recent works of Yong ([17], [19]), which studied an important extension of
backward stochastic differential equations (BSDEs in short), i.e., backward
stochastic Volterra integral equations (BSVIEs in short). The following well-
known nonlinear BSDEs

(1.1) Y (t) = ξ +

∫ T

t

g(s, Y (s), Z(s))ds−

∫ T

t

Z(s)dW (s),
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initiated by Pardoux and Peng [11], have been studied extensively in the past
two decades. The reader is referred to the books of Ma and Yong [8], Yong
and Zhou [20] and the survey paper of El Karoui, Peng and Quenez [6] and
so on for the detailed account of both theory and applications (especially in
mathematical finance and stochastic controls) of BSDE (1.1). As a remarkable
development of BSDEs, BSVIEs of the form

(1.2) Y (t) = ψ(t) +

∫ T

t

g(t, s, Y (s), Z(t, s), Z(s, t))ds−

∫ T

t

Z(t, s)dW (s),

were firstly introduced by Yong [17]. We refer the reader to [2], [13], [14],
[17], [18] and [19] for both theory and applications (especially in dynamic risk
measures and optimal controls) of BSVIEs. As to the adapted solution of (1.2)
in H2

t [0, T ] in the case where g is independent of the term Z(s, t) or ψ(t) = ξ,
the reader is referred to [1], [7], [15] and the references cited therein.

It will become more and more clear for BSVIEs to increasingly bring out
incontestable significance in the theory and applications. However there are
still many investigations to need in the fundamental theory of BSVIEs, such
as unique solvability, comparison theorems and so on. In the existing results
as in the papers mentioned above, the approaches are very complicated and
intricate in form, even there are some gaps in their arguments.

The aim of this paper is to propose a new brief method to investigate the
unique solvability of BSVIEs within a very general framework. Our results and
arguments will enrich and perfect the foundational theory of BSVIEs. Inspired
by the ideas in [5], firstly we will study the adapted M-solutions for (1.2) by
virtue of a briefer argument than the ones in [19] (The adapted M-solution will
be simplified as the M-solutions whenever it can be unambiguous in this paper).
The reasons are at least twofold. On the one hand, in order to prove the unique
existence of M-solutions for (1.2), the author had to make many preparations
in the arguments in [19], such as the solvability of certain stochastic Fredholm
integral equations (see Corollary 3.5 in [19]) and some complicated estimates of
M-solutions for certain simple BSVIEs (see (3.29)-(3.31) in [19]). On the other
hand, since BSVIEs do not have time-consistency (or semigroup property), and
the process Z has two time parameters, in order to make use of the induction
method in the arguments for BSVIEs, the author had to get across four steps in
[19] (see also [2] and [13]), which seems rather complicated and sophisticated.
Therefore we intend to introduce a new convenient argument, that is, as the
time interval [0, T ] is finite, we can make use of an equivalent norm in H2[0, T ]
as follows:

‖(y(·), z(·, ·))‖H2[0,T ]
=

[
E

∫ T

0

eβA(t)|y(t)|2dt+E

∫ T

0

∫ T

0

eβA(s)|z(t, s)|2dsdt

] 1

2

,

where β is a positive constant and A(t) is assumed to be bounded. Then we
will be able to prove the results for M-solutions within the new norm by one
step. This is our first contribution in this paper.
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No matter the adapted M-solutions in [2], [13], [17], [18] and [19], or the
adapted solutions in [7] and [15], the authors needed at least one of the following
assumptions: 1) g is independent of Z(s, t), 2) the terminal condition is FT -
measurable random variable ξ, 3) the Lipschitz condition is imposed, moreover
the Lipschitz coefficient is deterministic, 4) the deterministic non-Lipschitz
condition is satisfied. In the present paper, without the above assumptions
we consider the general setting of BSVIEs in terms of the above two kinds of
solutions, respectively.

The adapted solutions of (1.2) in H2[0, T ] is not unique due to the appear-
ance of Z(s, t) in the equations, (see Example 1.1 in [19]). Consequently, when
g is independent of Z(s, t), the authors obtained the existence and uniqueness of
adapted solution of (1.2) in H2

t [0, T ] under Lipschitz conditions in [14]. In this
paper we will develop the investigation on adapted solutions under stochastic
non-Lipschitz conditions by adopting a new approach, which considerably im-
proves and extends the results in [7], [14] and [15]. This is another contribution
in this paper.

Motivated by the key ideas in classical Lipschitz case, we will use the equiv-
alent norm above to study the existence and uniqueness of M-solutions for
(1.2) in H2[0, T ] under weaker conditions. Recently Ren [13] considered the
unique solvability of M-solutions under non-Lipschitz condition by adopting
the method proposed by Anh and Yong in [2]. However, there is one problem
ought to be pointed out. Firstly it is obvious that the splitting procedure in p.7
in [13] is lack in generality. Because the hypothesis (H3) in [13] is unreasonable
even in the simplest case, (see Example 1 in the present paper). In this paper,
we will bridge this gap by specifying some new assumptions which are weaker
and more natural than the ones in [13]. Furthermore, it is clear that one can-
not use the approaches in [15] directly to treat the existence of M-solutions
for (1.2) in H2[0, T ] under non-Lipschitz conditions. In fact, although in the
special case of g being independent of Z(s, t), one can use the similar procedure
as in [15] to get the solvability of M-solutions in H2[0, T ], but, as to the general
form of (1.2), the approaches in [15] (see also the existence on p. 10 in [13])

does not work well any more due to the appearance of E
∫ T

t |Z(s, t)|2ds, which
is rather difficult to estimate excepting introducing certain Malliavin calculus,
(see Section 4 in [13]). Therefore in order to overcome this difficulty, we should
apply some new ideas rather than copy the ones in [15]. By the definition of
adapted M-solution and stochastic Fubini theorem, we notice the following fact

E

∫ T

0

∫ T

t

|Z(s, t)|2dsdt = E

∫ T

0

∫ t

0

|Z(t, s)|2dsdt ≤ E

∫ T

0

|Y (t)|2dt,

which implies that one should use the norm

∫ T

u

eβA(t)E|Y (t)|2dt+ E

∫ T

u

∫ T

t

eβA(s)|Z(t, s)|2dsdt
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with a suitable adapted process A, u ∈ [0, T ], (Y, Z) ∈ H2[0, T ], rather than
the norm

eβtE|Y (t)|2 + E

∫ T

t

eβs|Z(t, s)|2ds

in [15]. With this new norm, we also need to apply a new Jensen’s inequality
by virtue of the property of convex function, which is different from the cor-
responding skills in [15]. After these preparations we can obtain the unique
existence of M-solutions for BSVIE (1.2) under non-Lipschitz condition, which
modifies and generalizes the results in [2], [13], [17], [18] and [19]. Eventually
we can claim that our methods here can also work well in more general cases,
such as the infinite dimension cases in [2] and [13], and the case of BSVIEs
with jumps in [13] and [15]. For simplicity of presentation in this paper, we
omit the discussion for the BSVIEs with jumps.

After the completion of this manuscript, we became aware of a recent work of
Wang and Zhang [16] where the solvability of M-solutions under non-Lipschitz
case was discussed. Comparing with the results and arguments in [16], there
are three points worthy to point out. Firstly our assumptions on the related
coefficients are much weaker than theirs, see (H2) below. Actually we allow
both the Lipschitz coefficients and the non-Lipschitz coefficients to be certain
integral functions rather than a constant. Secondly our method is totally dif-
ferent from ones in [16]. Our arguments are much briefer than theirs. For
example, they used Picard’s iteration that seems complicated and intricate, to
prove the existence result for M-solutions. In this paper we study the general
non-Lipschitz cases in virtue of the results in Lipschitz cases. Our approaches
circumvent many unnecessary procedures. Thirdly, our approaches do not in-
volve Itô formula which was heavily depended on in [15] and [16] . It is believed
that one important reason of the coefficients there being constants lies in not
only the limitation of their approach, but also the dependence of Itô formula,
see Lemma 3.1 in [15]. Thus this is another reason why we avoid the appearance
of Itô formula in our approach.

The paper is organized as follows. In Section 2, we give some preliminary
results and notations which are needed in the following sections. An impor-
tant estimate for M-solutions (or adapted solutions) is presented in Subsection
3.1. With this estimate, we give the existence and uniqueness result of M-
solutions under Lipschitz conditions in Subsection 3.2. The case of adapted
solutions is also treated. In Subsection 3.3, we consider the unique solvability
of M-solutions and adapted solutions, respectively, under non-Lipschitz con-
ditions. At last an example about M-solutions and adapted solutions under
non-Lipschitz condition is presented in Section 4.

2. Preliminaries

In this section, we will make some preliminaries. In the following we denote

∆c[R,S]
.
= {(t, s) ∈ [R,S]2; t ≤ s}, ∆c .

= ∆c[0, T ],
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∆[R,S]
.
= {(t, s) ∈ [R,S]2; t > s}, ∆

.
= ∆[0, T ], R, S ∈ [0, T ].

Let β be a positive constant. A(t) is a non-negative lF-adapted increasing
process.

L2

FT
(R,S;Rm)

.
=
{
X : [R,S]× Ω → R

m
∣∣∣ X(·) is FT -measurable process

such that E

∫ S

R

|X(s)|2ds <∞
}
.

L2,β
FT

(R,S;Rm)
.
=
{
X : [R,S]× Ω → R

m
∣∣∣ X(·) is FT -measurable process

such that EeβA(S)

∫ S

R

|X(s)|2ds <∞
}
.

From the above two definitions, we know L2,β
FT

(R,S;Rm) ⊂ L2
FT

(R,S;Rm). We
denote by

H2[R,S] = L2

lF(R,S;R
m)× L2(R,S;L2

lF(R,S;R
m×d)),

H2

t [R,S] = L2

lF(R,S;R
m)× L2(R,S;L2

lF(t, S;R
m×d)), t ∈ [R,S],

where

L2

lF(R,S;R
m)

.
=
{
X : [R,S]× Ω → R

m
∣∣∣ X(·) is lF-adapted process such that

E

∫ S

R

|X(s)|2ds <∞
}
,

L2(R,S;L2

lF(R,S;R
m×d))

.
=
{
Z : [R,S]2 × Ω → R

m×d
∣∣∣ Z(t, ·) is lF-adapted

process, for almost all t ∈ [R,S], E

∫ S

R

∫ S

R

|Z(t, s)|2dsdt <∞
}
,

L2(R,S;L2

lF(t, S;R
m×d))

.
=
{
Z : ∆c[R,S]× Ω → R

m×d
∣∣∣ Z(t, ·) is lF-adapted

process, for almost all t ∈ [R,S], E

∫ S

R

∫ S

t

|Z(t, s)|2dsdt <∞
}
.

Note that it is obvious that L2

lF
(R,S;Rm) ⊂ L2

FT
(R,S;Rm). We also denote

by

H2,β[R,S]
.
= L2,β

lF
(R,S;Rm)× L2,β(R,S;L2

lF(R,S;R
m)),

H2,β
t [R,S]

.
= L2,β

lF
(R,S;Rm)× L2,β(R,S;L2

lF(t, S;R
m×d)), t ∈ [R,S],

where for example

L2,β
lF

(R,S;Rm)=
{
X : [R,S]× Ω→R

m
∣∣∣ X(·) is lF-adapted process such that

E

∫ S

R

eβA(s)|X(s)|2ds <∞
}
.
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Here we also have some relations between the spaces above, for example,

L2,β
FT

(R,S;Rm) ⊂ L2

FT
(R,S;Rm), L2,β

lF
(R,S;Rm) ⊂ L2

lF(R,S;R
m).

Now we give two definitions needed in the sequel.

Definition 2.1. Let S ∈ [0, T ]. A pair of (Y (·), Z(·, ·)) ∈ H2,β [S, T ] is called
an adaptedM -solution of BSVIE (1.2) on [S, T ], if (1.2) holds in the usual Itô’s
sense for almost all t ∈ [S, T ] and, in addition, for any t ∈ [S, T ],

Y (t) = EFSY (t) +

∫ t

S

Z(t, s)dW (s).

Definition 2.2. A pair of (Y (·), Z(·, ·)) ∈ H2,β
t [0, T ] is called an adapted solu-

tion of the following simple BSVIE (2.3), if (2.3) holds in the usual Itô’s sense
for almost t ∈ [0, T ],

(2.3) Y (t) = ψ(t) +

∫ T

t

g(t, s, Y (s), Z(t, s))ds−

∫ T

t

Z(t, s)dW (s).

In [19], Yong introduced the notion of adapted M-solutions of BSVIEs in
H2[0, T ]. In [7] and [15], the authors considered the existence and uniqueness
of adapted solutions of (2.3) (ψ(·) is replaced with ξ) in H2

t [0, T ].
We give the following assumption on g for BSVIE (1.2):
(H1) Let g : ∆c ×R

m ×R
m×d ×R

m×d ×Ω → R
m be B(∆c ×Rm ×R

m×d ×
R

m×d) ⊗ FT -measurable such that s → g(t, s, y, z, ζ) is Fs-progressively mea-
surable for all (t, y, z, ζ) ∈ [0, T ]×R

m×R
m×d×R

m×d, furthermore, g satisfies
the Lipschitz conditions with stochastic coefficient, i.e., for any y, y ∈ R

m, z,
z, ζ, ζ ∈ R

m×d,

|g(t, s, y, z, ζ)− g(t, s, y, z, ζ)|

≤ L(t, s)α(s)(|y − y|+ |z − z|+ |ζ − ζ|), (t, s) ∈ ∆c,

where α(·) is an adapted process such that α(·) ≥ 1, and L(t, s) is a determin-
istic non-negative function with (t, s) ∈ ∆c. Given p ∈ (1, 2), suppose that A(·)
is integrable process such that

A(t) =

∫ t

0

α
2p

2−p (s)ds, t ∈ [0, T ].

Furthermore,

E

∫ T

0

∫ T

t

eβA(s)|g0(t, s)|
2dsdt <∞, where g0(t, s) ≡ g(t, s, 0, 0, 0).

3. Main results for M-solutions and adapted solutions

3.1. A basic estimate for solutions of BSVIEs

In this subsection, inspired by the method of estimating the adapted solu-
tions of BSDEs in [5], we give an important lemma.
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Lemma 3.1. We consider the following simple BSVIE

(3.4) Y (t) = ψ(t) +

∫ T

t

f(t, s)ds−

∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

where ψ(·) ∈ L2,β
FT

[0, T ], and f ∈ L2(0, T ;L2

lF
(t, T ;Rm)) such that

E

∫ T

0

∫ T

t

eβA(s)|f(t, s)|2dsdt <∞.

Then (1.2) admits a unique adapted solution (Y (·), Z(·, ·)) ∈ H2,β
t [0, T ], and

the following estimate holds, for p ∈ [1, 2),

E

∫ T

0

eβA(s)|Y (s)|2ds+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

≤ CEeβA(T )

∫ T

0

|ψ(t)|2dt+ CE

∫ T

0

eβA(t)

∣∣∣∣∣

∫ T

t

f(t, s)ds

∣∣∣∣∣

2

dt

+ CE

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

dsdt.(3.5)

Furthermore,

E

∫ T

0

eβA(s)|Y (s)|2ds+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

≤ CEeβA(T )

∫ T

0

|ψ(t)|2dt+
C

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.(3.6)

Hereafter C is a generic positive constant which may be different from line to

line.

Proof. Consider a family of BSDEs with parameters t on [0, T ] in the following
form:

(3.7) λ(t, r) = ψ(t) +

∫ T

r

f(t, s)ds−

∫ T

r

µ(t, s)dW (s), r ∈ [t, T ].

By the classical existence and uniqueness theorem of BSDEs in [11], there
exists a unique adapted solution (λ(t, ·), µ(t, ·)) on [t, T ], for every t ∈ [0, T ].
Let Y (t) = λ(t, t) with t ∈ [0, T ], Z(t, s) = µ(t, s) with 0 ≤ t ≤ s ≤ T. Then
we obtain the existence of the adapted solution for (3.7). From (3.7), it follows
that, ∀r ∈ [t, T ],
(3.8)



λ(t, r) = EFr

(
ψ(t) +

∫ T

r

f(t, s)ds

)
,

∫ T

r

Z(t, s)dW (s) =

∫ T

r

µ(t, s)dW (s) = ψ(t) +

∫ T

r

f(t, s)ds− λ(t, r).
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Especially when r = t, we obtain that

∫ T

t

Z(t, s)dW (s) =

∫ T

t

µ(t, s)dW (s) = ψ(t) +

∫ T

t

f(t, s)ds− Y (t).

Now we estimate

E

∫ T

0

eβA(s)|Y (s)|2ds+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt.

By Cauchy-Schwarz inequality we deduce that
∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ T

s

e
−γA(u)

2 α
p

2−p (u)e
γA(u)

2

f(t, u)

α
p

2−p (u)
du

∣∣∣∣∣

2

≤

∫ T

s

e−γA(u)α
2p

2−p (u)du ·

∫ T

s

eγA(u) |f(t, u)|
2

α
2p

2−p (u)
du

≤
1

γ
e−γA(s)

∫ T

s

eγA(u) |f(t, u)|
2

α
2p

2−p (u)
du, 0 ≤ s ≤ t ≤ T,(3.9)

where γ = β
2
or β. By taking γ = β

2
in (3.9), we see that

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

ds

≤
4

β

∫ T

t

βα
2p

2−p e
β
2
A(s)

(∫ T

s

e
β
2
A(u) |f(t, u)|

2

α
2p

2−p (u)
du

)
d
s

2

=

(
4

β
e

β
2
A(s) ·

∫ T

s

e
β
2
A(u) |f(t, u)|

2

α
2p

2−p (u)
du

)∣∣∣∣∣

T

t

+
4

β

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
ds

≤
4

β

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
ds.

Therefore,

(3.10)

E

∫ T

0

∫ T

t

βα
2p

2−p eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

dsdt

≤
4

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.

We also obtain the following result by taking s = t and γ = β in (3.9),

E

∫ T

0

eβA(t)

∣∣∣∣∣

∫ T

t

f(t, u)du

∣∣∣∣∣

2

dt ≤
1

β
E

∫ T

0

∫ T

t

eβA(u) |f(t, u)|
2

α
2p

2−p (u)
dudt.
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At first we estimate

E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt.

It is easy to see that

∫ T

r

βα
2p

2−p (s)eβA(s)

(∫ T

s

|Z(t, u)|2du

)
ds

=

(
eβA(s) ·

∫ T

s

|Z(t, u)|2du

)∣∣∣∣∣

T

r

+

∫ T

r

eβA(s)|Z(t, s)|2ds.(3.11)

For any t ∈ [0, T ], we can rewrite (3.11) after taking r = t,
(3.12)

E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

= E

∫ T

0

[∫ T

t

βα
2p

2−p (s)eβA(s)

∫ T

s

|Z(t, u)|2duds+ eβA(t)

∫ T

t

|Z(t, u)|2du

]
dt.

Now we give an estimate to the second expression in the right part of (3.12)

E

∫ T

0

eβA(t)

∫ T

t

|Z(t, u)|2dudt

= E

∫ T

0

E

(
eβA(t)

∫ T

t

|Z(t, u)|2du

∣∣∣∣∣Ft

)
dt

= E

∫ T

0

eβA(t)E



(∫ T

t

Z(t, u)dW (u)

)2
∣∣∣∣∣∣
Ft


 dt

= E

∫ T

0

eβA(t)E



(
ψ(t) +

∫ T

t

f(t, u)du− Y (t)

)2
∣∣∣∣∣∣
Ft


 dt

≤ 3E

∫ T

0

eβA(t)|ψ(t)|2dt+ 3E

∫ T

0

eβA(t)

∣∣∣∣∣

∫ T

t

f(t, u)du

∣∣∣∣∣

2

dt

+ 3E

∫ T

0

eβA(t)|Y (t)|2dt

≤ 3E

∫ T

0

eβA(t)|ψ(t)|2dt+
3

β
E

∫ T

0

∫ T

t

eβA(u) |f(t, u)|
2

α
2p

2−p (u)
dudt

+ 3E

∫ T

0

eβA(t)|Y (t)|2dt.(3.13)
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Obviously, we can use the similar method as (3.13) to estimate the first expres-
sion in the right part of (3.12) as follows:

E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

(∫ T

s

|Z(t, u)|2du

)
dsdt

≤ 3E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)|ψ(t)|2dsdt

+ 3E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

dsdt

+ 3E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)|λ(t, s)|2dsdt.(3.14)

For the second expression in the right part of (3.14), (3.10) implies that

3E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

dsdt

≤
12

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.(3.15)

Now let us to estimate the third expression of (3.14). Noting that

λ(t, s) = EFs

(
ψ(t) +

∫ T

s

f(t, u)du

)
, t ≤ s,

we deduce that,

|λ(t, s)|2 ≤ 2EFs |ψ(t)|2 + 2EFs

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

,

and

3E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)|λ(t, s)|2dsdt

≤ 6E

∫ T

0


eβA(T )|ψ(t)|2 +

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

ds


 dt

≤ 6EeβA(T )

∫ T

0

|ψ(t)|2dt+
24

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.(3.16)

(3.14), (3.15), (3.16) imply that

E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

(∫ T

s

|Z(t, u)|2du

)
dsdt
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≤
36

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt+ 9EeβA(T )

∫ T

0

|ψ(t)|2dt.(3.17)

By (3.12), (3.13), (3.17) we also see that

E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

≤ 12EeβA(T )

∫ T

0

|ψ(t)|2dt+ 3E

∫ T

0

eβA(t)|Y (t)|2dt

+
39

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.

Due to Y (t) = EFt

(
ψ(t) +

∫ T

t
f(t, s)ds

)
, we have

E

∫ T

0

eβA(t)|Y (t)|2dt

≤ 2E

∫ T

0

eβA(t)|ψ(t)|2dt+ 2E

∫ T

0

eβA(t)

∣∣∣∣∣

∫ T

t

f(t, s)ds

∣∣∣∣∣

2

dt

≤ 2E

∫ T

0

eβA(t)|ψ(t)|2dt+
2

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.

Eventually we obtain that

E

∫ T

0

eβA(s)|Y (s)|2ds+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

≤ 20EeβA(T )

∫ T

0

|ψ(t)|2dt+ 11E

∫ T

0

eβA(t)

∣∣∣∣∣

∫ T

t

f(t, s)ds

∣∣∣∣∣

2

dt

+ 9E

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

f(t, u)du

∣∣∣∣∣

2

dsdt.

Furthermore, it follows that

E

∫ T

0

eβA(t)|Y (t)|2dt+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt

≤ 20EeβA(T )

∫ T

0

|ψ(t)|2dt+
47

β
E

∫ T

0

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
dsdt.

It is easy to see that (3.5) or (3.6) implies the uniqueness of solutions for
(3.4). �

Remark 1. If we define Z(t, s) (0 ≤ s < t ≤ T ) by the following relation

Y (t) = EY (t) +

∫ t

0

Z(t, s)dW (s), ∀t ∈ [0, T ].
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Then BSVIE (3.4) admits a unique M-solution in H2,β[0, T ].

Remark 2. Under the same conditions as Lemma 3.1, we can also get a slight
sharper estimate for (Y, Z) than (3.6) as follows,

EeβA(t)|Y (t)|2 + E

∫ T

t

eβA(s)|Z(t, s)|2ds

≤ EeβA(T )|ψ(t)|2 +
C

β
E

∫ T

t

eβA(s) |f(t, s)|
2

α
2p

2−p (s)
ds,

with p ∈ [1, 2).

3.2. The Lipschitz case

In this subsection, comparing with the method in [19], we give the existence
and uniqueness of adapted M-solutions under Lipschitz conditions by a much
more convenient method. Before it, we need an inequality which will play an
important role in the following proof. Given 1 ≤ p < 2, f is a deterministic
function, suppose that

∫ T

r

eτA(s) 2

p
|f(t, s)|2

α2(s)
ds <∞, t, r ∈ [0, T ], τ > 0,

then we have
(∫ T

r

|f(t, s)|pds

) 2

p

=

(∫ T

r

e−τA(s)αp(s)eτA(s) |f(t, s)|
p

αp(s)
ds

) 2

p

≤

(∫ T

r

e−τA(s) 2

2−pα
2p

2−p (s)ds

) 2−p
p
(∫ T

r

eτA(s) 2

p
|f(t, s)|2

α2(s)
ds

)

≤

(
2− p

2τ

) 2−p
p

e−τA(r) 2

p

∫ T

r

eτA(s) 2

p
|f(t, s)|2

α2(s)
ds.(3.18)

Particularly, let τ = p
2
β, we arrive at

(3.19)(∫ T

r

|f(t, s)|pds

) 2

p

≤

(
2− p

p

) 2−p
p
(
1

β

) 2−p
p

e−βA(r)

∫ T

r

eβA(s) |f(t, s)|
2

α2(s)
ds.

Theorem 3.2. Let (H1) hold, ψ(·) ∈ L2,β
FT

[0, T ], and L(·, ·) satisfy

sup
t∈[0,T ]

(∫ T

t

Lq(t, s)ds

) 2

q

<∞,
1

p
+

1

q
= 1,

α(·) is deterministic, then (1.2) admits a unique adapted M-solution in H2[0, T ].
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Proof. Since A(·) is deterministic, by the definition of adapted M-solutions, it
is easy to see that

E

∫ T

0

∫ t

0

eβA(s)|Z(t, s)|2dsdt ≤ E

∫ T

0

eβA(t)|Y (t)|2dt.

As a consequence,

E

∫ T

0

eβA(t)|Y (t)|2dt+ E

∫ T

0

∫ T

0

eβA(s)|Z(t, s)|2dsdt

≤ 2E

∫ T

0

eβA(t)|Y (t)|2dt+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt.(3.20)

Let M2,β[0, T ] be the space of all (y(·), z(·, ·)) ∈ H2,β [0, T ] such that

y(t) = Ey(t) +

∫ t

0

z(t, s)dW (s), t ∈ [0, T ].

Clearly, it is a nonempty closed subspace of H2,β[0, T ]. Now we consider the
following BSVIE:
(3.21)

Y (t) = ψ(t) +

∫ T

t

g(t, s, y(s), z(t, s), z(s, t))ds−

∫ T

t

Z(t, s)dW (s), t ∈ [0, T ],

for any ψ(·) ∈ L2,β
T [0, T ] and (y(·), z(·, ·)) ∈ M2,β[0, T ]. Hence by Remark 1 we

know that (3.21) admits a unique M-solution (Y (·), Z(·, ·)) ∈ M2,β[0, T ], and
we can define a mapping Θ : M2,β [0, T ] → M2,β [0, T ] by

Θ(y(·), z(·, ·)) = (Y (·), Z(·, ·)), ∀(y(·), z(·, ·)) ∈ M2,β[0, T ].

Let (y(·), z(·, ·)) ∈ M2,β [0, T ] and Θ(y(·), z(·, ·)) = (Y (·), Z(·, ·)). It follows
from (3.5) in Lemma 3.1 and (3.20) above that,

E

∫ T

0

eβA(t)|Y (t)− Y (t)|2dt+ E

∫ T

0

∫ T

0

eβA(s)|Z(t, s)− Z(t, s)|2dsdt

≤ CE

∫ T

0


eβA(t)

∣∣∣∣∣

∫ T

t

H(t, s)ds

∣∣∣∣∣

2

+

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

H(t, u)du

∣∣∣∣∣

2

ds


dt

≤ CE

∫ T

0


eβA(t)

∣∣∣∣∣

∫ T

t

G(t, s)ds

∣∣∣∣∣

2

+

∫ T

t

βα
2p

2−p (s)eβA(s)

∣∣∣∣∣

∫ T

s

G(t, u)du

∣∣∣∣∣

2

ds


dt

≤ CE

∫ T

0

eβA(t)

(∫ T

t

Lq(t, s)ds

) 2

q
(∫ T

t

Up(t, s)ds

) 2

p

dt

+ CE

∫ T

0

∫ T

t

βα
2p

2−p (s)eβA(s)

(∫ T

s

Lq(t, u)du

) 2

q
(∫ T

s

Up(t, u)du

) 2

p

dsdt,
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where

H(t, s) = g(t, s, y(s), z(t, s), z(s, t))− g(t, s, y(s), z(t, s), z(s, t)),

G(t, s) = L(t, s)α(s)(|y(s)− y(s)|+ |z(t, s)− z(t, s)|+ |z(s, t)− z(s, t)|),

U(t, s) = α(s)(|y(s) − y(s)|+ |z(t, s)− z(t, s)|+ |z(s, t)− z(s, t)|).

From inequality (3.19) above, we have

E

∫ T

0


eβA(t)

(∫ T

t

Up(t, s)ds

) 2

p

+

∫ T

t

βα
2p

2−p (s)eβA(s)

(∫ T

s

Up(t, u)du

) 2

p

ds


 dt

≤ C

(
1

β

) 2−p
p

E

∫ T

0

∫ T

t

eβA(s)|y(s)− y(s)|2dsdt

+ C

(
1

β

) 2−p
p

E

∫ T

0

∫ T

t

eβA(s)|z(t, s)− z(t, s)|2dsdt

+ C

(
1

β

) 2−p
p

E

∫ T

0

∫ T

t

eβA(s)|z(s, t)− z(s, t)|2dsdt.

Eventually we get

E

∫ T

0

eβA(t)|Y (t)− Y (t)|2dt+ E

∫ T

0

∫ T

0

eβA(s)|Z(t, s)− Z(t, s)|2dsdt

≤ C

(
1

β

) 2−p
p

E

∫ T

0

eβA(s)|y(s)− y(s)|2ds

+ C

(
1

β

) 2−p
p

E

∫ T

0

∫ T

t

eβA(s)|z(t, s)− z(t, s)|2dsdt.

Choosing a sufficient large number β so that C
(

1

β

) 2−p
p

< 1. Then the map-

ping Θ is contractive from H2,β[0, T ] onto itself. Since A(s) is integrable
and deterministic, it follows that BSVIE (1.2) admits a unique M-solution
in H2[0, T ]. �

Remark 3. By (3.20), one can understand the reason for assuming α(·) to be

deterministic. In this case, A is bounded, hence the norm ofH2,β [0, T ] and L2,β
FT

are equivalent to the norm of H2[0, T ] and L2
FT

respectively, thus BSVIE (1.2)

admits a unique M-solution in H2[0, T ]. As a result, we can finish the proof of
existence and uniqueness of M-solutions in H2[0, T ] with only one step, which
is much more convenient than the four steps in [19].
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Remark 4. In our setting we only impose some integrable conditions on L, i.e.,

sup
t∈[0,T ]

∫ T

t

Lq(t, s)ds <∞, q > 2.

It is equivalent to the requirement in [19] where q above is replaced by 2+ǫ with
ǫ be a positive constant. Note that (3.19) plays a key role in this procedure.

Similarly we can obtain the existence and uniqueness of the adapted so-
lutions for (2.3) in H2

t [0, T ]. In order to estimate the value of Z(t, s) with
(t, s) ∈ ∆[0, T ], we suppose A(·) to be deterministic. However, as to adapted
solution in in H2

t [0, T ], such requirement is not needed.

Theorem 3.3. Let (H1) hold, ψ(·)∈L2
FT

[0, T ], and supt∈[0,T ]

(∫ T

t
Lq(t, s)ds

) 2

q

< ∞. Moreover A(·) is bounded. Then BSVIE (2.3) admits a unique adapted

solution in H2
t [0, T ].

Proof. We can get the result by similar ideas as in Theorem 3.2 above, so we
omit it. �

3.3. The non-Lipschitz case

In this subsection, we will consider the unique existence of adapted M-
solution of (1.2) in H2[0, T ] and adapted solution of (2.3) in H2

t [0, T ] under
non-Lipschitz conditions. We assume that

(H2) For all y, y ∈ R
m, z, z, ζ, ζ ∈ R

m×d, and (t, s) ∈ ∆c

|g(t, s, y, z, ζ)− g(t, s, y, z, ζ)|

≤ L(t, s)α(s)((ρ(|y − y|2))
1

2 + |z − z|+ |ζ − ζ|),

where ρ is an increasing concave function from R+ to R+ such that ρ(0) = 0,
and

∫
0+

du
ρ(u) = ∞. L(t, s) is a deterministic non-negative function.

Since ρ is concave and ρ(0) = 0, one can find a pair of positive constants a
and b such that ρ(u) ≤ a + bu, for all u ≥ 0. Ren [13] studied well-posedness
of adapted M-solution of (1.2) under non-Lipschitz condition in infinite dimen-
sional space. However, there are some problems that should be pointed out.
Let us consider the following example.

Example 1. Let L(t, s) =
√

2

T−t with 0 ≤ t < T, t ≤ s, and L(t, s) = 0 with

t = 0, t ≤ s, thus we have

sup
t∈[0,T ]

∫ T

t

L2(t, s)ds = 2 <∞,

which satisfies the assumption (H3) on p. 4 in [13]. However, there does not
exist a sequence 0 = T0 < T2 < · · · < Tk−1 < Tk = T such that

sup
t∈[Ti−1,Ti]

∫ Ti

t

L2(t, s)ds ≤ 1− δ



1316 YUFENG SHI AND TIANXIAO WANG

with δ ∈ (0, 1). In fact, in such case there is no Tk−1 satisfying the above
condition.

By Example 1, it is clear that there exists functions satisfying (H3) in [13]
which does not have a split procedure as above. In this paper we will specify
some other assumptions on the coefficients which is more weaker than ones
in [13]. On the other hand, for the unique solvability of M-solutions for (1.2)

under non-Lipschitz conditions, one will meet an expression E
∫ T

t
|Z(s, t)|2ds

which is hard to estimate. Therefore we cannot use the method in [15] (see p.
10 in [13]) directly to treat it. Some other new tricks should be proposed to
overcome the difficulty in such general setting. Firstly, we need to introduce
a lemma, i.e., a new type of Jensen’s inequality, which is indispensable in the
following theorem.

Lemma 3.4. Let f(t) : [0, T ] → R
+ satisfy

∫ T

0
f(t)dt < ∞ and c(x) : R → R

be a concave function. Then we have

1

T − t

∫ T

t

c(f(s))ds ≤ c

(
1

T − t

∫ T

t

f(s)ds

)
, ∀t ∈ [0, T ].

Proof. Obviously −c(x) is a convex function, for fixed x ∈ R, ∀ y1 > x, y2 < x,
we have (see p. 544 in [12]).

−c(y1) + c(x)

y1 − x
≥ −c

′

+(x) ≥ −c
′

−(x) ≥
−c(y2) + c(x)

y2 − x
,

thus there exists a k ∈ [−c
′

−(x),−c
′

+(x)] so that ∀y ∈ R, −c(y) ≥ −c(x) +
k · (y − x), i.e., c(y) ≤ c(x) − k(y − x). For any fixed t ∈ [0, T ], s ∈ [t, T ], let

x = 1

T−t

∫ T

t f(s)ds, y = f(s), then

c(f(s)) ≤ c

(
1

T − t

∫ T

t

f(s)ds

)
− k ·

(
f(s)−

1

T − t

∫ T

t

f(s)ds

)
,

thus the desired conclusion is obtained. �

We are now ready to establish the main result of this subsection.

Theorem 3.5. Let (H2) hold, ψ(·) ∈ L2
FT

[0, T ], α(·) is deterministic, L(t, s)

satisfy supt∈[0,T ](
∫ T

t Lq(t, s)ds)
2

q < ∞. Then (1.2) admits a unique adapted

M-solution in H2[0, T ].

Proof. Uniqueness: Let (Yi, Zi) ∈ H2[0, T ] (i = 1, 2) be any two adapted M-
solutions. For t, s ∈ [0, T ], by defining

Ŷ (t) = Y1(t)− Y2(t), Ẑ(t, s) = Z1(t, s)− Z2(t, s),

it follows that

Ŷ (t) +

∫ T

t

Ẑ(t, s)dW (s)
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=

∫ T

t

[g(t, s, Y1(s), Z1(t, s), Z1(s, t))− g(t, s, Y2(s), Z2(t, s), Z2(s, t))]ds.

Note that Ŷ (T ) = 0. For arbitrary u ∈ [0, T ), we can obtain the following
results in the same way as in Theorem 3.2,

E

∫ T

u

eβA(t)|Ŷ (t)|2dt+ E

∫ T

u

∫ T

t

eβA(s)|Ẑ(t, s)|2dsdt

≤ C

(
1

β

) 2−p
p

E

∫ T

u

∫ T

t

eβA(s)ρ(|Ŷ (s)|2)dsdt

+ C

(
1

β

) 2−p
p

[
E

∫ T

u

∫ T

t

eβA(s)|Ẑ(t, s)|2dsdt+ E

∫ T

u

eβA(t)|Ŷ (t)|2dt

]
.

By choosing a suitable β, it holds that

E

∫ T

u

eβA(t)|Ŷ (t)|2dt ≤ CE

∫ T

u

∫ T

t

eβA(s)ρ(|Ŷ (s)|2)dsdt,

consequently,

1

T − u
E

∫ T

u

|Ŷ (t)|2dt ≤ CE

∫ T

u

1

T − t

∫ T

t

ρ(|Ŷ (s)|2)dsdt

≤ C

∫ T

u

ρ

(
1

T − t

∫ T

t

E|Ŷ (s)|2ds

)
dt.

Due to Bihari’s inequality (see [3]) we get that

1

T − u
E

∫ T

u

|Ŷ (t)|2dt = 0 ∀u ∈ [0, T ),

thus Ŷ (t) = 0 as well as Ẑ(t, s) = 0, a.s., ∀t, s ∈ [0, T ].
Existence: Let Y0(t) ≡ 0, and define recursively (Yn, Zn) by the following

equations with the help of Theorem 3.2
(3.22)

Yn(t) = ψ(t) +

∫ T

t

g(t, s, Yn−1(s), Zn(t, s), Zn(s, t))ds−

∫ T

t

Zn(t, s)dW (s).

By setting

Ŷn,k(t) = Yn(t)− Yk(t); Ẑn,k(t, s) = Zn(t, s)− Zk(t, s), t, s ∈ [0, T ],

and choosing a suitable β, we claim that

E

∫ T

u

eβA(t)|Ŷn,k(t)|
2dt+ E

∫ T

u

∫ T

t

eβA(s)|Ẑn,k(t, s)|
2dsdt

≤ CE

∫ T

u

∫ T

t

eβA(s)ρ(|Ŷn−1,k−1(s)|
2)dsdt,
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then

1

T − u
E

∫ T

u

|Ŷn,k(t)|
2dt ≤ C

∫ T

u

ρ

(
1

T − t

∫ T

t

E|Ŷn−1,k−1(s)|
2ds

)
dt.

Set

Q(u) = lim sup
n,k→∞

E

∫ T

u

|Ŷn,k(t)|
2dt, u ∈ [0, T ]

then

S(u) = sup
n≥0

E

∫ T

u

|Yn(t)|
2dt, u ∈ [0, T ]

is bounded. In fact, by the similar trick as in Theorem 3.2, it follows that

E

∫ T

u

eβA(t)|Yn(t)|
2dt+ E

∫ T

u

∫ T

t

eβA(s)|Zn(t, s)|
2dsdt

≤ CE

∫ T

u

eβA(t)|ψ(t)|2dt+ C

(
1

β

) 2−p
p

E

∫ T

u

∫ T

t

eβA(s)|g0(t, s)|
2dsdt

+ C

(
1

β

) 2−p
p

E

∫ T

u

∫ T

t

eβA(s)(a+ b|Yn−1(s)|
2)dsdt

+ C

(
1

β

) 2−p
p

[
E

∫ T

u

∫ T

t

eβA(s)|Zn(t, s)|
2dsdt+ E

∫ T

u

eβA(t)|Yn(t)|
2dt

]
.

Thus by choosing β, we have

E

∫ T

u

|Yn(t)|
2dt ≤ C + CE

∫ T

u

|ψ(t)|2dt

+ CE

∫ T

u

∫ T

t

|g0(t, s)|
2dsdt+ CE

∫ T

u

∫ T

t

|Yn−1(s)|
2dsdt.

In view of Gronwall’s inequality we know that S(u) is bounded. Then by
Fatou’s lemma, Bihari’s inequality and noting that ρ is increasing, we deduce
that for almost every u ∈ [0, T ], Q(u) = 0, and it follows that

lim
n,k→∞

E

∫ T

0

|Yn(t)− Yk(t)|
2dt = 0,

hence there is a Y such that

lim
n→∞

E

∫ T

0

|Yn(t)− Y (t)|2dt = 0.

Similarly there is a Z such that

lim
n→∞

E

∫ T

0

∫ T

t

|Zn(t, s)− Z(t, s)|2dsdt = 0,

lim
n→∞

E

∫ T

0

∫ t

0

|Zn(t, s)− Z(t, s)|2dsdt ≤ lim
n→∞

E

∫ T

0

|Yn(t)− Y (t)|2dt = 0.
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By taking the limits for (3.22), one can find that (Y, Z) is an M-solution of
(1.2). �

As to the adapted solution of (2.3) in H2
t [0, T ], α(·) can be allowed to be

random, and we have:

Theorem 3.6. Let (H2) hold, ψ(·) ∈ L2
FT

[0, T ], supt∈[0,T ](
∫ T

t Lq(t, s)ds)
2

q <

∞, A∗(t) be bounded. Then BSVIE (2.3) admits a unique adapted solution in

H2
t [0, T ].

Proof. The proof can be easily completed by using the similar ideas in Theorem
3.5 above, so we omit it. �

When α(·) is a constant and ψ(·) = ξ, g is independent of Z(s, t), then we
get the result in [15]:

Corollary 1. Let (H2) hold, ri(s) = 1, L(t, s) = k, k is a constant. Then (2.3)
admits a unique adapted solution in H2

t [0, T ].

Remark 5. By means of Itô formula, the authors in [15] gave a critical estimate
for

eβt|Y (t)|2 + EFt

∫ T

t

eβs|Z(t, s)|2ds.

It is similar to the estimate in Remark 2 above which can be derived without
the involving of Itô formula, and both of them are stronger than the estimate
of the form

E

∫ T

0

eβA(t)|Y (t)|2dt+ E

∫ T

0

∫ T

t

eβA(s)|Z(t, s)|2dsdt,

used in Theorems 3.2, 3.3, 3.5 and 3.6 above. However, both of the previous
two estimates have certain drawbacks. In fact, if we use any one of the two
estimates above to prove the existence and uniqueness of M-solution of (1.2) in
H2[0, T ] and adapted solution of (2.3) inH2

t [0, T ], it is easy to check the stronger

conditions of supt∈[0,T ]E|ψ(t)|2 < ∞ and supt∈[0,T ]E
∫ T

t |g0(t, s)|
2ds < ∞ are

required.

4. Examples

At last we want to give a simple example to show the unique existence of
adapted solution (or M-solution) under non-Lipschitz condition. As shown in
[9] or [10], the following two functions satisfy the assumption of ρ in (H2),

ρ1(x) =

{
x ln(x−1), x ∈ [0, δ],

δ ln(δ−1) + ρ̇1(δ−)(x − δ), x > δ,

ρ2(x) =

{
x ln(x−1) ln ln(x−1), x ∈ [0, δ],

δ ln(δ−1) ln ln(δ−1) + ρ̇2(δ−)(x − δ), x > δ,

with δ ∈ (0, 1) being sufficiently small. However, the explicit form of ρi is not
easy to get, so now we will give another example to avoid this problem.
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Let us consider the following equation
(4.23)

Y (t) = ψ(t) +

∫ T

t

L(t, s)[f(|Y (s)|) + |Z(t, s)|+ |Z(s, t)|]ds−

∫ T

t

Z(t, s)dW (s),

where f : R → [0,∞) is defined by

f(x) =





0, x = 0,

|x|
[
ln(1 + |x|−1)

] 1

2 , 0 < |x| < δ,

δ
[
ln(1 + |δ|−1)

] 1

2 , |x| ≥ δ,

L(t, s) satisfies supt∈[0,T ]

∫ T

t
Lq(t, s)ds < ∞, where q > 2 is a constant. It can

be shown that |f(y)− f(y)| ≤ ρ(|y − y|2)
1

2 where ρ can be defined by

ρ(x) =





0, x = 0,
x ln(1 + x−1), 0 < x < 1,

ln 2, x ≥ 1.

We refer the reader to [4] for the proof. Then by Theorem 3.5, it is clear that
(4.23) admits a unique M-solution. We can also give the example for adapted
solutions in a similar way.
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