• 제목/요약/키워드: backstepping

검색결과 182건 처리시간 0.038초

슬라이딩모드 적응 자속관측기를 이용한 불확실성을 갖는 유도전동기의 적응 백스테핑제어 (Adaptive Backstepping Control of Induction Motors with Uncertainties Using a Sliding Mode Adaptive flux Observer)

  • 이은욱;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.154-160
    • /
    • 2004
  • In this paper, a combined field orientation and adaptive backstepping approach using a sliding mode adaptive flux observer, is proposed for the control of induction motor In order to achieve the speed regulation with the consideration of improving power efficiency, rotor angular speed and flux amplitude tracking objectives are formulated. Rotor flux and inverse time constant are estimated by the sliding mode adaptive flux observer based on a fixed stator frame model and mechanical lumped uncertainty such as inertia moment, load torque disturbance, friction compensated by the adaptive backstepping based on a field-oriented model. Simulation results are provided to verify the effectiveness of the proposed approach.

Backstepping 기법을 이용한 서보시스템의 제어 (Control of Servo System Using Backstepping)

  • 윤기영;지석준;최우진;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2224-2226
    • /
    • 2003
  • 서보시스템은 공작 기계, 자동화기계용 등의 제어에 사용되고 있는 대표적인 제어 시스템으로서 관성 디스크를 교환하기도 하며 전자가변 포화도와 히스테리시스등을 사용하여 고정밀 연구용에도 이용가능하다. 그러나 모델의 불확실성이나 외부외란이 필연적으로 존재할 수 밖에 없으므로 이를 분석하고 규명하여 원하는 목적의 제어를 위한 제어기를 설계해야만 할 것이다. 따라서, 본 연구에서는 제어대상 시스템의 불화실성을 극복할 수 있고 비선형항의 소거를 통한 선형화가 아닌 비선형 제어기의 설계를 가능하게 하는 Backstepping 제어기법을 사용하여 서보시스템의 정밀한 제어와 시스템 안정성을 보장하고자 한다. Backstepping 제어기를 설계하여 다양한 조건하에서의 시뮬레이션을 수행하여 제안하는 제어기의 최적 수행 능력을 보이고자 한다.

  • PDF

AC 서보 시스템에 대한 Backstepping 슬라이딩 모드 제어기 설계 (A Backstepping Design with Sliding Mode Control for AC Servo System)

  • 김성환;박승규;안호균;김민찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2248-2250
    • /
    • 2003
  • This paper Backstepping design with Sliding Mode Control for AC Servo Systems. The robustness of sliding mode control can be used for backstepping technique to solve the uncertainty problem. A scalar design using Lyapunov function is developed for high-order systems. The result can be easily extended to non-linear system and used with many other sliding mode control results.

  • PDF

단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계 (Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot)

  • 김영태
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.

Model-Free Adaptive Integral Backstepping Control for PMSM Drive Systems

  • Li, Hongmei;Li, Xinyu;Chen, Zhiwei;Mao, Jingkui;Huang, Jiandong
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1193-1202
    • /
    • 2019
  • A SMPMSM drive system is a typical nonlinear system with time-varying parameters and unmodeled dynamics. The speed outer loop and current inner loop control structures are coupled and coexist with various disturbances, which makes the speed control of SMPMSM drive systems challenging. First, an ultra-local model of a PMSM driving system is established online based on the algebraic estimation method of model-free control. Second, based on the backstepping control framework, model-free adaptive integral backstepping (MF-AIB) control is proposed. This scheme is applied to the permanent magnet synchronous motor (PMSM) drive system of an electric vehicle for the first time. The validity of the proposed control scheme is verified by system simulations and experimental results obtained from a SMPMSM drive system bench test.

Robust Position Control of One DOF Mechanical Systems Using Dual PIOs Without Velocity Measurement

  • Han, Minsoo;Lee, Cho Won;Yook, Joo-Hyoung;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.356-362
    • /
    • 2017
  • This paper presents a robust position controller for a one degree-of-freedom (DOF) mechanical system using only position measurement. In order to alleviate the performance degradation owing to various uncertainties, a two-stage design method is studied by employing a proportional integral observer (PIO). In the first stage, a baseline backstepping controller is designed for a nominal system without accounting for uncertainties. The PIO is developed for estimating both the velocity information for the backstepping controller and an equivalent input disturbance for a feedforward compensation using the estimated uncertainty. It is shown that the estimation errors with the proposed PIO can be made arbitrarily small in a finite time. If the system suffers from undesirable actuator nonlinearities, however, it might be necessary to estimate the velocity and the disturbance with different rates of convergence. The proposed method combines the predesigned backstepping controller and dual PIOs to reduce mechanical vibrations as well as steady-state errors. The performance of the proposed method is tested through comparative computer simulations and experiments using a laboratory prototype.

Backstepping Control for Multi-Machine Web Winding System

  • Bouchiba, Bousmaha;Hazzab, Abdeldjebar;Glaoui, Hachemi;Med-Karim, Fellah;Bousserhane, Ismail Khalil;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.59-66
    • /
    • 2011
  • This work treat the modeling and simulation of non-linear dynamic behavior of a web winding process during traction. We designate by a winding process any system applying the cycles of unwinding, transport, treatment, and winding to various flat products. This system knows several constraints, such as the thermal effects caused by the frictions, and the mechanical effects provoked by metal elongation, that generates dysfunctions due to the influence of the process conditions. Several controllers are considered, including Proportional-integral (PI) and Backstepping control. This paper presents the study of Backstepping controls strategy of the winding system. Our winding system is simulated in MATLAB SIMULINK environment, the results obtained illustrate the efficiency of the proposed control with no overshoot, and the rising time is improved with good disturbances rejections comparing with the classical control law.