• Title/Summary/Keyword: auxiliary resonant circuit

Search Result 135, Processing Time 0.027 seconds

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses

  • Mahdavi, Mohammad;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.708-717
    • /
    • 2009
  • In this paper a new zero voltage transition PWM bridgeless PFC is introduced. The auxiliary circuit provides soft switching condition for all semiconductor devices. Also, in the resonant path of the auxiliary circuit, only two semiconductor devices exist. Therefore the resonant conduction losses are low. Furthermore, the auxiliary circuit semiconductor elements consist of only one diode and one switch. The proposed auxiliary circuit is applied to a bridgeless PFC converter to further reduce conduction and switching losses. In this paper, the operating modes of this converter are explained and the resulting ideal and simulation waveforms are shown. The presented experimental results justify the theoretical analysis.

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Modeling of auxiliary resonant inverter circuit using mediocrity power module (범용파워모듈로 구성된 보조 공진형 인버터의 특성 해석)

  • Lee, S.H.;Mun, S.P.;Kwon, S.K.;Lee, S.H.;Suh, K.Y.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.9-11
    • /
    • 2002
  • These days, electromagnetic radiation noise and switching losses of static converter become harmful. Many resonant inverters with radiation techniques solve their such problems. Auxiliary Resonant Commutated Pole Inverter (ARCP) was proposed. but it has two demerits. In circuit configuration. It isn't constructed by 2 in 1 IGBT modules, Besides, control is complicated because of neutral point voltage control and boost. current control. This paper proposes a new auxiliary resonant inverter which solved two demerits. In addition, it deals efficiency which compared with hard switching inverter and result of separation of power loss

  • PDF

Elimination of harmonics in three-Phase PWM inverter using auxiliary partial resonant circuit (보조부분 공진 회로를 이용한 삼상 PWM 인버터의 고조파 제거)

  • Suh, Ki-Young;Lee, Hyun-Woo;Kim, Young-Mun;Mun, Sang-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.137-140
    • /
    • 1998
  • A new SPWM inverter using three-phase boost converter by auxiliary partial resonant with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the switch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new Partial resonant boost converter achieves zero-voltage switching (ZVS) or zero-current switching (ZCS) for all switch devices without increasing their voltage and current stresses. This paper introduces elimination of low-order harmonics compared with conventional SPWM inverter and SPWM inverter using three-phase boost converter by auxiliary Partial resonant.

  • PDF

A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber (보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

Design and Anaysis of Soft Switching Boost Converter with H-auxiliary resonant circuit (H-보조 공진 회로를 갖는 소프트 스위칭 부스트 컨버터의 설계 및 해석)

  • Cha, Gil-Ro;Park, So-Ri;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Lee, Su-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.118-120
    • /
    • 2008
  • In this paper, a soft switching boost converter with H-auxiliary resonant circuit is proposed. Using some resonant components, the circuit can be achieved the soft switching capability. Each of the switches in the proposed circuit perform ZVS at turn off and ZCS at turn on. Thus, the high efficiency characteristic can also be obtained, and then the size of the total system can be reduced. The operational principle of the soft switching boost converter in theoretically analyzed. Simulation results validate the analysis and experimental results demonstrate soft switching boost converter benefits.

  • PDF

A soft switching ZVT boost converter using auxiliary resonant circuit (보조 공진 회로를 이용한 소프트 스위칭 ZVT 부스트 컨버터)

  • Lee, Hee-Jun;Kim, Jun-Gu;Jun, Bum-Su;Jung, Yong-Chae;Won, Chun-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.477-478
    • /
    • 2010
  • In this paper, soft switching boost converter with ZVT(Zero Voltage Transition) method was proposed. Each switch of the proposed ZVT converter is operated under soft switching condition through using auxiliary resonant circuit. Also, the ZVT converter is verified through operation modes analysis and simulation.

  • PDF

Design Criteria of the Auxiliary Resonant Snubber Inverter Using a Load-Side Circuit for Electric Propulsion Drives

  • Song, Byeong-Mun;Jih-Sheng(Jason) Lai;Kwon, Soon-Kurl
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.143-148
    • /
    • 1998
  • The Design criteria of the auxiliary resonant snubber inverter (ARSI) using a load-side circuit are discussed in relation to electric propulsion drives. In this regard, this paper attempts to develop a set of design criteria for the ARSI. First, the switching characteristics of IGBTs under soft-switching mainly in terms of dv/dt/, di/dt and switching losses are discussed and utilized for optimizing the selection of the resonant components in the system. After that, the proper control strategies of ARSIs are analyzed and simulated based on voltage space vector modulations. Later, the design, control and implementation of the auxiliary resonant circuit suitable for industrial products are analyzed and presented. And finally, other factors including power stage layout, packaging and the choice of current sensors are included. The detailed simulation and experimental results will be included based on a laboratory prototype. The proposed design criteria of the ARSI would help the implementation of an electric propulsion drive system.

  • PDF