• Title/Summary/Keyword: autoregressive process

Search Result 165, Processing Time 0.029 seconds

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

ON THE DETERMINANTS OF ENTREPRENEURSHIP IN MIDDLE EAST AND NORTH AFRICA

  • Zmami, Mourad;Salha, Ousama Ben
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.181-187
    • /
    • 2021
  • The purpose of this study is to examine empirically the short- and long-run determinants of entrepreneurial activity in a sample of 15 the Middle East and North African economies between 2006 and 2018. More specifically, four groups of determinants are considered in the analysis, namely economic, demographic, business environment, and institutional. Given the autoregressive feature of the entrepreneurial activity process, a dynamic panel data model is estimated using the system GMM estimator. Findings reveal that unemployment, trade openness, population density, and economic freedom are the main drivers of new business creation in the short-run, while the cost and number of procedures to start a new business negatively affect entrepreneurship. In the long-run, the same findings hold true. Moreover, education and political stability and the absence of violence/terrorism positively affect entrepreneurial activity. Policy recommendations are accordingly designed.

Stochastic Differential Equations for Modeling of High Maneuvering Target Tracking

  • Hajiramezanali, Mohammadehsan;Fouladi, Seyyed Hamed;Ritcey, James A.;Amindavar, Hamidreza
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.849-858
    • /
    • 2013
  • In this paper, we propose a new adaptive single model to track a maneuvering target with abrupt accelerations. We utilize the stochastic differential equation to model acceleration of a maneuvering target with stochastic volatility (SV). We assume the generalized autoregressive conditional heteroscedasticity (GARCH) process as the model for the tracking procedure of the SV. In the proposed scheme, to track a high maneuvering target, we modify the Kalman filtering by introducing a new GARCH model for estimating SV. The proposed tracking algorithm operates in both the non-maneuvering and maneuvering modes, and, unlike the traditional decision-based model, the maneuver detection procedure is eliminated. Furthermore, we stress that the improved performance using the GARCH acceleration model is due to properties inherent in GARCH modeling itself that comply with maneuvering target trajectory. Moreover, the computational complexity of this model is more efficient than that of traditional methods. Finally, the effectiveness and capabilities of our proposed strategy are demonstrated and validated through Monte Carlo simulation studies.

Integrating approach to size and site at a sanitary landfill in Selangor state, Malaysia

  • Younes, Mohammad Khairi;Basri, Noor Ezlin Ahmad;Nopiaha, Zulkifli Mohammad;Basri, Hassan;Abushammala, Mohammed F.M.;Maulud, Khairul Nizam Abdul
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.268-276
    • /
    • 2015
  • Solid waste production increases due to population and consumption increments. Landfill is the ultimate destination for all kinds of municipal solid waste; and is the most convenient waste disposal method in developing countries. To minimize investment and operational costs and society's opposition towards locating landfills nearby, proper landfill sizing and siting are essential. In this study, solid waste forecasting using Autoregressive Integrating Moving Average (ARIMA) was integrated with government future plans and waste composition to estimate the required landfill area for the state of Selangor, Malaysia. Landfill siting criteria were then prioritized based on expert's preferences. To minimize ambiguity and the uncertainty of the criteria prioritizing process, the expert's preferences were treated using integrated Median Ranked Sample Set (MRSS) and Analytic Hierarchy Process (AHP) models. The results show that the required landfill area is 342 hectares and the environmental criteria are the most important; with a priority equal to 48%.

Learning the Covariance Dynamics of a Large-Scale Environment for Informative Path Planning of Unmanned Aerial Vehicle Sensors

  • Park, Soo-Ho;Choi, Han-Lim;Roy, Nicholas;How, Jonathan P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.326-337
    • /
    • 2010
  • This work addresses problems regarding trajectory planning for unmanned aerial vehicle sensors. Such sensors are used for taking measurements of large nonlinear systems. The sensor investigations presented here entails methods for improving estimations and predictions of large nonlinear systems. Thoroughly understanding the global system state typically requires probabilistic state estimation. Thus, in order to meet this requirement, the goal is to find trajectories such that the measurements along each trajectory minimize the expected error of the predicted state of the system. The considerable nonlinearity of the dynamics governing these systems necessitates the use of computationally costly Monte-Carlo estimation techniques, which are needed to update the state distribution over time. This computational burden renders planning to be infeasible since the search process must calculate the covariance of the posterior state estimate for each candidate path. To resolve this challenge, this work proposes to replace the computationally intensive numerical prediction process with an approximate covariance dynamics model learned using a nonlinear time-series regression. The use of autoregressive time-series featuring a regularized least squares algorithm facilitates the learning of accurate and efficient parametric models. The learned covariance dynamics are demonstrated to outperform other approximation strategies, such as linearization and partial ensemble propagation, when used for trajectory optimization, in terms of accuracy and speed, with examples of simplified weather forecasting.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

A Stochastic Simulation Model for the Precipitation Amounts of Hourly Precipitation Series (시간강수계열의 강수량 모의발생을 위한 추계학적 모형)

  • Lee, Jung-Sik;Lee, Jae-joon;Park, Jong-Young
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.763-777
    • /
    • 2002
  • The objective of this study is to develop computer simulation model that produces precipitation patterns from stochastic model. The hourly precipitation process consists of the precipitation occurrence and precipitation amounts. In this study, an event cluster model developed by Lee and Lee(2002) is used to describe the occurrence process of events, and the hourly precipitation amounts within each event is described by a nonstationary form of a first-order autoregressive process. The complete stochastic model for hourly precipitation is fitted to historical precipitation data by estimating the model parameters. An analysis of historical and simulated hourly precipitation data for Seoul indicates that the stochastic model preserves many of the features of historical precipitation. The autocorrelation coefficients of the historical and simulated data are nearly identical except for lags more than about 3 hours. The precipitation intensity, duration, marginal distributions, and conditional distributions for event characteristics for the historical and simulated data showed in general good agreement with each other.

Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA (마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구)

  • Jung, Seunghwan;Kim, Sungshin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

Linkage Between Exchange Rate and Stock Prices: Evidence from Vietnam

  • DANG, Van Cuong;LE, Thi Lanh;NGUYEN, Quang Khai;TRAN, Duc Quang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.95-107
    • /
    • 2020
  • The study investigates the asymmetric effect of exchange rate changes on stock prices in Vietnam. We use the nonlinear autoregressive-distributed lag (ARDL) analysis for monthly data from 2001:01 to 2018:05, based on VN-Index stock price collected from Ho Chi Minh Stock Exchange (HOSE); the nominal exchange rate is separated into currency depreciation and appreciation through a partial sum decomposition process. Asymmetry is estimated both in the long-run relationship and the short-run error correction mechanism. The research results show that the effect of exchange rate changes on stock prices is asymmetrical, both in the short run and in long run. Accordingly, the stock prices react to different levels to depreciation and appreciation. However, the currency appreciation affects a stronger transmission of stock prices when compared to the long-run currency depreciation. In the absence of asymmetry, the exchange rate only has a short-run impact on stock prices. This implies a symmetrical assumption that underestimates the impact of exchange rate changes on stock prices in Vietnam. This study points to an important implication for regulators in Vietnam. They should consider the relationship between exchange rate changes and stock prices in both the long run and the short run to manage the stock and foreign exchange market.

EVALUATION OF AN ENHANCED WEATHER GENERATION TOOL FOR SAN ANTONIO CLIMATE STATION IN TEXAS

  • Lee, Ju-Young
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Several computer programs have been developed to make stochastically generated weather data from observed daily data. But they require fully dataset to run WGEN. Mostly, meterological data frequently have sporadic missing data as well as totally missing data. The modified WGEN has data filling algorithm for incomplete meterological datasets. Any other WGEN models have not the function of data filling. Modified WGEN with data filling algorithm is processing from the equation of Matalas for first order autoregressive process on a multi dimensional state with known cross and auto correlations among state variables. The parameters of the equation of Matalas are derived from existing dataset and derived parameters are adopted to fill data. In case of WGEN (Richardson and Wright, 1984), it is one of most widely used weather generators. But it has to be modified and added. It uses an exponential distribution to generate precipitation amounts. An exponential distribution is easier to describe the distribution of precipitation amounts. But precipitation data with using exponential distribution has not been expressed well. In this paper, generated precipitation data from WGEN and Modified WGEN were compared with corresponding measured data as statistic parameters. The modified WGEN adopted a formula of CLIGEN for WEPP (Water Erosion Prediction Project) in USDA in 1985. In this paper, the result of other parameters except precipitation is not introduced. It will be introduced through study of verification and review soon

  • PDF